A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nonlocal hydrodynamic influence on the dynamic contact angle: slip models versus experiment. | LitMetric

Nonlocal hydrodynamic influence on the dynamic contact angle: slip models versus experiment.

Phys Rev E Stat Nonlin Soft Matter Phys

School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom.

Published: April 2006

Experiments reported by Blake [Phys. Fluids., 11, 1995 (1999)] suggest that the dynamic contact angle formed between the free surface of a liquid and a moving solid boundary at a fixed contact-line speed depends on the flow field and geometry near the moving contact line. We examine quantitatively whether or not it is possible to attribute this effect to the bending of the free surface due to hydrodynamic stresses acting upon it and hence interpret the results in terms of the so-called "apparent" contact angle. It is shown that this is not the case. Numerical analysis of the problem demonstrates that, at the spatial resolution reported in the experiments, the variations of the "apparent" contact angle (defined in two different ways) caused by variations in the flow field, at a fixed contact-line speed, are too small to account for the observed effect. The results clearly indicate that the actual (macroscopic) dynamic contact angle--i.e., the one used in fluid mechanics as a boundary condition for the equation determining the free surface shape--must be regarded as dependent not only on the contact-line speed but also on the flow field and geometry in the vicinity of the moving contact line.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.73.041606DOI Listing

Publication Analysis

Top Keywords

contact angle
16
dynamic contact
12
free surface
12
contact-line speed
12
flow field
12
fixed contact-line
8
field geometry
8
moving contact
8
"apparent" contact
8
contact
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!