C57BL6J, FVB/N and 129/SvJ mice are commonly used as background strains to engineer genetic models of brain pathologies and psychiatric disorders. Magnetic resonance imaging (MRI) and spectroscopy provide alternative approaches to neuroanatomy, histology and neurohistochemistry for investigating the correlation between genes and brain neuroanatomy and neurometabolism in vivo. We used these techniques to non-invasively characterize the cerebral morphologic and metabolic endophenotypes of inbred mouse strains commonly used in neurological and behavioral research. We observed a great variability in the volume of ventricles and of structures involved in cognitive function (cerebellum and hippocampus) among these strains. In addition, distinct metabolic profiles were evidenced with variable levels of N-acetylaspartate, a neuronal marker, and of choline, a compound found in membranes and myelin. Besides, significant differences in high-energy phosphates and phospholipids were detected. Our findings demonstrate the great morphologic and metabolic heterogeneity among C57BL/ 6J, FVB/N and 129/SvJ mice. They emphasize the importance of selecting the appropriate genetic background for over-expressing or silencing a gene and provide some directions for modeling symptoms that characterize psychiatric disorders such as autism, schizophrenia and depression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10519-006-9077-4 | DOI Listing |
Neuropharmacology
January 2025
School of Pharmacy and Biomedical Sciences, The University of Central Lancashire, Preston UK. Electronic address:
Personality disorders (PDs) are psychiatric conditions characterized by enduring patterns of cognition, emotion, and behaviour that deviate significantly from cultural norms, causing distress or impairment. The aetiology of PDs is complex, involving both genetic and environmental factors. Genetic studies estimate the heritability of PDs at 30% to 60%, implicating genes involved in neurotransmitter regulation, such as those for serotonin transporters and dopamine receptors.
View Article and Find Full Text PDFTransl Psychiatry
January 2025
Department of Neuropsychiatry, Dongguk University, School of Medicine, Seoul, Republic of Korea.
Autism spectrum disorder (ASD) is linked to ion channel dysfunction, including chloride voltage-gated channel-4 (CLCN4). We generated Clcn4 knockout (KO) mice by deleting exon 5 of chromosome 7 in the C57BL/6 mice. Clcn4 KO exhibited reduced social interaction and increased repetitive behaviors assessed using three-chamber and marble burying tests.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Institute for Complex Systems and Mathematical Biology, King's College, University of Aberdeen, Old Aberdeen AB24 3UE, UK.
Background/objectives: A prominent endophenotype in Autism Spectrum Disorder (ASD) is the synaptic plasticity dysfunction, yet the molecular mechanism remains elusive. As a prototype, we investigate the postsynaptic signal transduction network in glutamatergic neurons and integrate single-cell nucleus transcriptomics data from the Prefrontal Cortex (PFC) to unveil the malfunction of translation control.
Methods: We devise an innovative and highly dependable pipeline to transform our acquired signal transduction network into an mRNA Signaling-Regulatory Network (mSiReN) and analyze it at the RNA level.
J Neurosci
January 2025
Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801.
Dynamic reconfigurations of the functional connectome across different connectivity states are highly heritable, predictive of cognitive abilities, and linked to mental health. Despite their established heritability, the specific polymorphisms that shape connectome dynamics are largely unknown. Given the widespread regulatory impact of modulatory neurotransmitters on functional connectivity, we comprehensively investigated a large set of single nucleotide polymorphisms (SNPs) of their receptors, metabolic enzymes, and transporters in 674 healthy adult subjects (347 females) from the Human Connectome Project.
View Article and Find Full Text PDFDiabetes Obes Metab
January 2025
School of Health and Wellbeing, University of Glasgow, Glasgow, UK.
Aims: Glucagon-like peptide 1 receptor agonists (GLP1RA), used to treat type 2 diabetes and obesity, have been associated with off-target behavioural effects. We systematically assessed genetic variation in the GLP1R locus for impact on mental ill-health (MIH) and cardiometabolic phenotypes across diverse populations within UK Biobank.
Materials And Methods: All genetic variants with minor allele frequency >1% in the GLP1R locus were investigated for associations with MIH phenotypes and cardiometabolic phenotypes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!