In previous studies, initiation of protein synthesis was shown to be inhibited in perfused rat livers deprived of single essential amino acids. In the present study, histidinol, a competitive inhibitor of histidinyl-tRNA synthetase, was used to amplify the effects of histidine deprivation on protein synthesis in perfused liver to facilitate investigation of mechanisms involved in the inhibition of peptide chain initiation. Protein synthesis was reduced to 77% of the control rate in livers deprived of histidine and to 13% of the control rate in livers deprived of histidine and exposed to 2.0 mM histidinol. The inhibition of protein synthesis caused by histidine deprivation alone was accompanied by a 2-fold increase in the number of free ribosomal particles, a 29% decrease in Met-tRNA(i) binding to 43 S preinitiation complexes, and a 31% reduction in activity of eukaryotic initiation factor 2B (eIF-2B). By comparison, histidine deprivation combined with histidinol addition resulted in a 3-fold increase in free ribosomal particles, a 66% decrease in Met-tRNAi binding, and a 78% reduction in eIF-2B activity. The proportion of the alpha-subunit of eukaryotic initiation factor two (eIF-2) in the phosphorylated form increased from 8.9 +/- 0.8% in control livers to 52.4 +/- 5.5% in response to histidinol. The increase in the amount of eIF-2 alpha in the phosphorylated form apparently was not due to an increase in kinase activity, because there was no change in eIF-2 alpha kinase activity in extracts of liver perfused with medium containing histidinol compared to controls. Instead, the increased phosphorylation of eIF-2 alpha was associated with an inhibition of eIF-2 alpha phosphatase activity. Thus, in contrast to other systems that have been examined, the mechanism involved in the increase in the phosphorylation state of eIF-2 alpha appears to involve an inhibition of eIF-2 alpha phosphatase activity rather than activation of an eIF-2 alpha kinase.

Download full-text PDF

Source

Publication Analysis

Top Keywords

eif-2 alpha
28
protein synthesis
16
eukaryotic initiation
12
initiation factor
12
alpha phosphatase
12
phosphatase activity
12
livers deprived
12
histidine deprivation
12
inhibition peptide
8
peptide chain
8

Similar Publications

Absence of MCJ/DnaJC15 promotes brown adipose tissue thermogenesis.

Nat Commun

January 2025

Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.

Obesity poses a global health challenge, demanding a deeper understanding of adipose tissue (AT) and its mitochondria. This study describes the role of the mitochondrial protein Methylation-controlled J protein (MCJ/DnaJC15) in orchestrating brown adipose tissue (BAT) thermogenesis. Here we show how MCJ expression decreases during obesity, as evident in human and mouse adipose tissue samples.

View Article and Find Full Text PDF

Autophagy related 7 (ATG7) regulates food intake and liver health during asparaginase exposure.

J Biol Chem

January 2025

Nutritional Sciences Graduate Program, Rutgers University, New Brunswick, New Jersey, United States; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States; Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, United States; Endocrinology and Animal Biosciences Graduate Program, Rutgers University, New Brunswick, New Jersey, United States; New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, United States. Electronic address:

Amino acid starvation by the chemotherapy agent asparaginase is a potent activator of the integrated stress response (ISR) in liver and can upregulate autophagy in some cell types. We hypothesized that autophagy related 7 (ATG7), a protein that is essential for autophagy and an ISR target gene, was necessary during exposure to asparaginase to maintain liver health. We knocked down Atg7 systemically (Atg7) or in hepatocytes only (ls-Atg7KO) in mice before exposure to pegylated asparaginase for 5 d.

View Article and Find Full Text PDF

Cancer cells rely on invasive growth to survive in a hostile microenvironment; this growth is characterised by interconnected processes such as epithelial-to-mesenchymal transition and migration. A master regulator of these events is the MET oncogene, which is overexpressed in the majority of cancers; however, since mutations in the MET oncogene are seen only rarely in cancers and are relatively infrequent, the mechanisms that cause this widespread MET overexpression remain obscure. Here, we show that the 5' untranslated region (5'UTR) of MET mRNA harbours two functional stress-responsive elements, conferring translational regulation by the integrated stress response (ISR), regulated by phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) at serine 52.

View Article and Find Full Text PDF

eIF2α Phosphorylation-ATF4 Axis-Mediated Transcriptional Reprogramming Mitigates Mitochondrial Impairment During ER Stress.

Mol Cells

January 2025

Basic-Clinical Convergence Research Center, School of Biological Sciences, University of Ulsan, Ulsan 44610, Korea. Electronic address:

Eukaryotic translation initiation factor 2α (eIF2α) phosphorylation, which regulates all three unfolded protein response pathways, helps maintain cellular homeostasis and overcome endoplasmic reticulum (ER) stress through transcriptional and translational reprogramming. However, transcriptional regulation of mitochondrial homeostasis by eIF2α phosphorylation during ER stress is not fully understood. Here, we report that the eIF2α phosphorylation-activating transcription factor 4 (ATF4) axis is required for expression of multiple transcription factors (TFs) including nuclear factor erythroid 2-related factor 2 (Nrf2) and their target genes responsible for mitochondrial homeostasis during ER stress.

View Article and Find Full Text PDF

The Translation Initiation Factor eIF2Bα Regulates Development, Stress Response, Amylase Production, and Kojic Acid Synthesis in the Fungus Aspergillus oryzae.

Curr Microbiol

January 2025

Engineering Technological Center of Fungus Active Substances of Fujian Province, College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou, 363000, China.

Translation initiation, which involves numerous protein factors and coordinated control steps, represents the most complicated process during eukaryotic translation. However, the roles of eukaryotic translation initiation factor (eIF) in filamentous fungi are not well clarified. In this study, we investigated the function of eIF2Bα in Aspergillus oryzae, an industrially important filamentous fungus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!