By manipulating arthropod reproduction worldwide, the heritable endosymbiont Wolbachia has spread to pandemic levels. Little is known about the microbial basis of cytoplasmic incompatibility (CI) except that bacterial densities and percentages of infected sperm cysts associate with incompatibility strength. The recent discovery of a temperate bacteriophage (WO-B) of Wolbachia containing ankyrin-encoding genes and virulence factors has led to intensifying debate that bacteriophage WO-B induces CI. However, current hypotheses have not considered the separate roles that lytic and lysogenic phage might have on bacterial fitness and phenotype. Here we describe a set of quantitative approaches to characterize phage densities and its associations with bacterial densities and CI. We enumerated genome copy number of phage WO-B and Wolbachia and CI penetrance in supergroup A- and B-infected males of the parasitoid wasp Nasonia vitripennis. We report several findings: (1) variability in CI strength for A-infected males is positively associated with bacterial densities, as expected under the bacterial density model of CI, (2) phage and bacterial densities have a significant inverse association, as expected for an active lytic infection, and (3) CI strength and phage densities are inversely related in A-infected males; similarly, males expressing incomplete CI have significantly higher phage densities than males expressing complete CI. Ultrastructural analyses indicate that approximately 12% of the A Wolbachia have phage particles, and aggregations of these particles can putatively occur outside the Wolbachia cell. Physical interactions were observed between approximately 16% of the Wolbachia cells and spermatid tails. The results support a low to moderate frequency of lytic development in Wolbachia and an overall negative density relationship between bacteriophage and Wolbachia. The findings motivate a novel phage density model of CI in which lytic phage repress Wolbachia densities and therefore reproductive parasitism. We conclude that phage, Wolbachia, and arthropods form a tripartite symbiotic association in which all three are integral to understanding the biology of this widespread endosymbiosis. Clarifying the roles of lytic and lysogenic phage development in Wolbachia biology will effectively structure inquiries into this research topic.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1463016 | PMC |
http://dx.doi.org/10.1371/journal.ppat.0020043 | DOI Listing |
Science
January 2025
Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
Single-cell decisions made in complex environments underlie many bacterial phenomena. Image-based transcriptomics approaches offer an avenue to study such behaviors, yet these approaches have been hindered by the massive density of bacterial messenger RNA. To overcome this challenge, we combined 1000-fold volumetric expansion with multiplexed error-robust fluorescence in situ hybridization (MERFISH) to create bacterial-MERFISH.
View Article and Find Full Text PDFLasers Med Sci
January 2025
Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province, 230601, P.R. China.
Skin flap transplantation is a conventional wound repair method in plastic and reconstructive surgery, but infection and ischemia are common complications. Photobiomodulation (PBM) therapy has shown promise for various medical problems, including wound repair processes, due to its capability to accelerate angiogenesis and relieve inflammation. This study investigated the effect of red and blue light on the survival of random skin flaps in methicillin-resistant Staphylococcus aureus (MRSA)-infected Sprague Dawley (SD) rats.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China. Electronic address:
Due to the increasing pollution of electromagnetic waves and the vigorous development of intelligent electronic devices, there is great interest in finding high-quality electromagnetic wave absorbing materials for integrated control boxes (ICBs) that integrate various electronic components. Polyaniline (PANI) is a new type of absorbing material with great potential due to its designable structure, simple preparation process, low density and adjustable conductivity. Herein, we prepared BCNF/PANI nanoscale conductive fibers with core-shell structure by in-situ growth of PANI on the surface of bacterial cellulose nanofibers (BCNF) by oxidative polymerization and further prepared cellulose/polyaniline/polyvinyl alcohol (BCNF/PANI/PVA) composite aerogel absorbing material by a freeze-drying process.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
This study introduces a novel bilayer wound dressing that integrates a quaternized chitosan-polyacrylic acid (QCs-PAA) sponge as the top layer with electrospun nanofibers containing curcumin as the bottom layer. For the first time, QCs and PAA were combined in an 80:20 ratio through freeze-drying to form a porous sponge layer with ideal structural properties, including 83 ± 6 % porosity and pore diameters of 290 ± 12.5 μm.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education) / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China. Electronic address:
Co-contamination with organic/inorganic compounds is common in industrial area and poses a great risk to local soil ecological environment. In this study, an operating ink factory site co-contaminated with polycyclic aromatic hydrocarbons (PAHs, mild to moderate pollution level) and heavy metals (HMs, heavy pollution level) was selected and screened for native vegetation, Carmona microphylla. High-throughput sequencing and metabolomics were mainly used to investigate the responses of soil bacteria and metabolites to the composite pollution and rhizosphere effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!