Efficient gene delivery to pancreatic islets with ultrasonic microbubble destruction technology.

Proc Natl Acad Sci U S A

Department of Internal Medicine, Cardiology Section, Baylor University Medical Center, Baylor Heart and Vascular Institute, 621 North Hall Street, Suite H030, Dallas, TX 75226, USA.

Published: May 2006

This study describes a method of gene delivery to pancreatic islets of adult, living animals by ultrasound targeted microbubble destruction (UTMD). The technique involves incorporation of plasmids into the phospholipid shell of gas-filled microbubbles, which are then infused into rats and destroyed within the pancreatic microcirculation with ultrasound. Specific delivery of genes to islet beta cells by UTMD was achieved by using a plasmid containing a rat insulin 1 promoter (RIP), and reporter gene expression was regulated appropriately by glucose in animals that received a RIP-luciferase plasmid. To demonstrate biological efficacy, we used UTMD to deliver RIP-human insulin and RIP-hexokinase I plasmids to islets of adult rats. Delivery of the former plasmid resulted in clear increases in circulating human C-peptide and decreased blood glucose levels, whereas delivery of the latter plasmid resulted in a clear increase in hexokinase I protein expression in islets, increased insulin levels in blood, and decreased circulating glucose levels. We conclude that UTMD allows relatively noninvasive delivery of genes to pancreatic islets with an efficiency sufficient to modulate beta cell function in adult animals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1482516PMC
http://dx.doi.org/10.1073/pnas.0602921103DOI Listing

Publication Analysis

Top Keywords

pancreatic islets
12
gene delivery
8
delivery pancreatic
8
microbubble destruction
8
islets adult
8
delivery genes
8
delivery plasmid
8
plasmid clear
8
glucose levels
8
delivery
6

Similar Publications

The neuropeptide oxytocin (OXT) and its receptor (OXTR) have been shown to play an important role in glucose metabolism, and pancreatic islets express this ligand and receptor. In the current study, OXTR expression was identified in α-, β-, and δ-cells of the pancreatic islet by RNA hybridization, and OXT protein expression was observed only in β-cells. In order to examine the contribution of islet OXT/OXTR in glycemic control and islet β-cell heath, we developed a β-cell specific OXTR knock-out (β-KO) mouse.

View Article and Find Full Text PDF

β-cell dysfunction in pancreatic islets, characterized as either the loss of β-cell mass or the resistance of β-cell to glucose, is the leading cause of progression to diabetes. Islet transplantation became a promising approach to replenish functional β-cell mass. However, not much known about changes in islets used for transplantation after isolation.

View Article and Find Full Text PDF

Introduction: Type 1 diabetic human islet β-cells are deficient in double C 2 like domain beta (DOC2b) protein. Further, DOC2b protects against cytokine-induced pancreatic islet β-cell stress and apoptosis. However, the mechanisms underpinning the protective effects of DOC2b remain unknown.

View Article and Find Full Text PDF

While pancreatic beta-cell proliferation has been extensively studied, the role of cell death during islet development remains incompletely understood. Using a genetic model of caspase inhibition in beta cells coupled with mathematical modeling, we here discover an onset of beta-cell death in juvenile zebrafish, which regulates beta-cell mass. Histologically, this beta-cell death is underestimated due to phagocytosis by resident macrophages.

View Article and Find Full Text PDF

A dissociated glucocorticoid receptor modulator mitigates glucolipotoxicity in the endocrine pancreas and peripheral tissues: Preclinical data from a mouse model of diet-induced type 2 diabetes.

Life Sci

January 2025

Immuno-Endocrinology, Diabetes & Metabolism Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET - Universidad Austral, Pilar, Argentina; Facultad de Ciencias Biomédicas, , Universidad Austral, Pilar, Argentina. Electronic address:

Aims: Type 2 diabetes (T2D) is a prevalent metabolic disease linked to obesity and metabolic syndrome (MS). The glucolipotoxic environment (GLT) impacts tissues causing low-grade inflammation, insulin resistance and the gradual loss of pancreatic β-cell function, leading to hyperglycemia. We have previously shown that Compound A (CpdA), a plant-derived dissociative glucocorticoid receptor-modulator with inflammation-suppressive activity, displays protective effects on β-cells in type 1 diabetes murine models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!