Role and regulation of nodal/activin receptor-like kinase 7 signaling pathway in the control of ovarian follicular atresia.

Mol Endocrinol

Department of Obstetrics and Gynaecology, University of Ottawa, Ottawa Health Research Institute, Ottawa, Ontario, Canada K1Y 4E9.

Published: October 2006

Although the role of the TGF beta superfamily members in the regulation of ovarian folliculogenesis has been extensively studied, their involvement in follicular atresia is not well understood. In the present study, we have demonstrated for the first time that Nodal, a member of the TGF beta superfamily, is involved in promoting follicular atresia as evidenced by the following: 1) colocalization of Nodal and its type I receptor Activin receptor-like kinase 7 (ALK7) proteins in the granulosa cells was only observed in atretic antral follicles, whereas they were present in theca cells and granulosa cells of healthy follicles, respectively; 2) addition of recombinant Nodal or overexpression of Nodal by adenoviral infection induced apoptosis of otherwise healthy granulosa cells; 3) constitutively active ALK7 (ALK7-ca) overexpression mimicked the function of Nodal in the induction of granulosa cell apoptosis. Furthermore, overexpression of Nodal or ALK7-ca increased phosphorylation and nuclear translocation of Smad2, decreased X-linked inhibitor of apoptotic proteins (Xiap) expression at both mRNA and protein level and phospho-Akt content, as well as triggered mitochondrial release of death proteins Smac/DIABLO, Omi/HtrA2, and cytochrome c in the granulosa cells. Dominant-negative Smad2 significantly attenuated ALK7-ca-induced down-regulation of Xiap and thus rescued granulosa cells from undergoing apoptosis. In addition, whereas up-regulation of Xiap significantly attenuated ALK7-ca-induced apoptosis, down-regulation of Xiap sensitized granulosa cells to ALK7-ca-induced apoptosis. Furthermore, ALK7-ca-induced apoptosis was significantly attenuated by forced expression of activated Akt, and Akt rescued granulosa cells from undergoing apoptosis via proteasome-mediated ALK7 degradation. Taken together, Nodal plays an atretogenic role in the ovary where it induces granulosa cell apoptosis through activation of Smad2, down-regulation of the key survival molecules Xiap and phospho-Akt, as well as the activation of mitochondrial death pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1210/me.2005-0446DOI Listing

Publication Analysis

Top Keywords

granulosa cells
28
follicular atresia
12
alk7-ca-induced apoptosis
12
granulosa
9
receptor-like kinase
8
tgf beta
8
beta superfamily
8
cells
8
overexpression nodal
8
apoptosis
8

Similar Publications

Anti-Müllerian hormone (AMH) protects the ovarian reserve from chemotherapy, and this effect is most pronounced with Doxorubicin (DOX). However, DOX toxicity and AMH rescue mechanisms in the ovary have remained unclear. Herein, we characterize the consequences of these treatments in ovarian cell types using scRNAseq.

View Article and Find Full Text PDF

Ovarian aging is mainly characterized by a progressive decline in oocyte quantity and quality, which ultimately leads to female infertility. Various therapies have been established to cope with ovarian aging, among which exosome-based therapy is considered a promising strategy that can benefit ovarian functions via multiple pathways. Here, we isolated and characterized exosomes derived from ovarian follicular fluid and profiled the differential expression patterns of noncoding exosomal RNAs in young and aged women.

View Article and Find Full Text PDF

Oocyte/zygote/embryo maturation arrest: a clinical study expanding the phenotype of NOBOX variants.

J Assist Reprod Genet

January 2025

Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Clinical Sciences, Research Group Genetics, Reproduction and Development, Centre for Medical Genetics, Laarbeeklaan 101, 1090, Brussels, Belgium.

Purpose: Primary ovarian insufficiency (POI) is an important cause of female infertility, stemming from follicle dysfunction or premature oocyte depletion. Pathogenic variants in genes such as NOBOX, GDF9, BMP15, and FSHR have been linked to POI. NOBOX, a transcription factor expressed in oocytes and granulosa cells, plays a pivotal role in folliculogenesis.

View Article and Find Full Text PDF

Dietary Advanced Glycation End Products and Superovulation with Gonadotropins Alters RAGE expression in the Ovaries Differently at Each Follicular Stage of Development.

Mol Cell Endocrinol

January 2025

Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA; Reproductive Medicine Associates of New York, Department of Obstetrics, Gynecology and Reproductive Science, Division of Reproductive Endocrinology and Infertility, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

The purpose of this study was to examine the deposition of advanced glycation end products (AGEs) and their receptors, RAGE, in ovarian follicles during folliculogenesis in mice fed high (H-AGE) or low (L-AGE) AGE diets and following superovulation with gonadotropins. We hypothesize that H-AGE diet is associated with increased AGE deposition and RAGE expression in various stages of ovarian follicular development, and superovulation with gonadotropins may alter these changes. C57BL/6J mice were fed low L-AGE (n=10) or H-AGE (n=10) diet for 12 weeks.

View Article and Find Full Text PDF

Heat stress negatively affects the reproductive function of in animals and humans. Although a relationship between heat and oxidative stress has been suggested, the underlying mechanism has not been sufficiently examined in reproduction-related cells. Therefore, we aimed to investigate whether heat stress induces oxidative stress using a variety of reproduction-related cells including bovine placental and cumulus-granulosa cells, human cell lines derived from cervical and endometrial cancers, and fibroblasts derived from endometrium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!