The neural cell adhesion molecule (NCAM) can bind to and activate fibroblast growth factor receptor 1 (FGFR1). However, there are four major FGFR isoforms (FGFR1-FGFR4), and it is not known whether NCAM also interacts directly with the other three FGFR isoforms. In this study, we show by surface plasmon resonance analysis that NCAM can bind to FGFR2 with an affinity similar to that for the NCAM-FGFR1 interaction. However, the kinetic parameters for the NCAM-FGFR2 binding are different from those of the NCAM-FGFR1 binding. Both receptors were shown to cycle relatively fast between the NCAM bound and unbound states, although FGFR2 cycling was clearly faster (13 times) than the FGFR1 cycling. Moreover, ATP was more effective in inhibiting the binding of NCAM to FGFR1 than to FGFR2, indicating that the binding sites in NCAM for the two receptors are similar, but not identical.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2006.05.008DOI Listing

Publication Analysis

Top Keywords

neural cell
8
cell adhesion
8
adhesion molecule
8
fibroblast growth
8
growth factor
8
factor receptor
8
ncam bind
8
fgfr isoforms
8
ncam
6
molecule binds
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!