Structural equation models are very popular for studying relationships among observed and latent variables. However, the existing theory and computer packages are developed mainly under the assumption of normality, and hence cannot be satisfactorily applied to non-normal and ordered categorical data that are common in behavioural, social and psychological research. In this paper, we develop a Bayesian approach to the analysis of structural equation models in which the manifest variables are ordered categorical and/or from an exponential family. In this framework, models with a mixture of binomial, ordered categorical and normal variables can be analysed. Bayesian estimates of the unknown parameters are obtained by a computational procedure that combines the Gibbs sampler and the Metropolis-Hastings algorithm. Some goodness-of-fit statistics are proposed to evaluate the fit of the posited model. The methodology is illustrated by results obtained from a simulation study and analysis of a real data set about non-adherence of hypertension patients in a medical treatment scheme.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1348/000711005X81403 | DOI Listing |
BMC Health Serv Res
January 2025
Henley Business School, University of Reading, Reading, RG9 3AU, UK.
Background: Globally, healthcare systems are experiencing a workforce crisis which has been exacerbated by the COVID19 pandemic. Numerous reports have documented the deterioration of healthcare professional wellbeing with burnout being called the new pandemic. Rehabilitation Medicine Physicians are among the most likely specialties to experience burnout.
View Article and Find Full Text PDFBMC Public Health
January 2025
Department of Statistics and Data Science, Jahangirnagar University, Dhaka, 1342, Bangladesh.
Background: Child mortality is a reliable and significant indicator of a nation's health. Although the child mortality rate in Bangladesh is declining over time, it still needs to drop even more in order to meet the Sustainable Development Goals (SDGs). Machine Learning models are one of the best tools for making more accurate and efficient forecasts and gaining in-depth knowledge.
View Article and Find Full Text PDFNat Commun
January 2025
School of Physics, Beihang University, Haidian District, Beijing, China.
Topology is being widely adopted to understand and to categorize quantum matter in modern physics. The nexus of topology orders, which engenders distinct quantum phases with benefits to both fundamental research and practical applications for future quantum devices, can be driven by topological phase transition through modulating intrinsic or extrinsic ordering parameters. The conjoined topology, however, is still elusive in experiments due to the lack of suitable material platforms.
View Article and Find Full Text PDFJ Clin Monit Comput
January 2025
Department of Electrical Engineering, Eindhoven University of Technology, Groene Loper 3, 5612 AZ, Eindhoven, the Netherlands.
Unobtrusive pulse rate monitoring by continuous video recording, based on remote photoplethysmography (rPPG), might enable early detection of perioperative arrhythmias in general ward patients. However, the accuracy of an rPPG-based machine learning model to monitor the pulse rate during sinus rhythm and arrhythmias is unknown. We conducted a prospective, observational diagnostic study in a cohort with a high prevalence of arrhythmias (patients undergoing elective electrical cardioversion).
View Article and Find Full Text PDFCodas
January 2025
Programa de Pós-Graduação em Fonoaudiologia, Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP - Marília (SP), Brasil.
Purpose: To investigate whether there is a difference in the classification of speech hypernasality by inexperienced listeners using different ordinal scales; to verify the agreement of the listeners in the analyses when using these scales; and to verify whether the order in which the scales are presented influences the results.
Methods: Twenty Speech-Language Pathology students classified the degrees of hypernasality of 40 (oral) samples from patients with cleft lip and palate. Ten performed the classifications using a 4-point scale (absent, mild, moderate, and severe) and, after two weeks, using a 3-point scale (absent, slightly hypernasal, and very hypernasal).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!