A general and efficient method for the coupling of a wide range of amides with alkynyl bromides is described here. This novel amidation reaction involves a catalytic protocol using copper(II) sulfate-pentahydrate and 1,10-phenanthroline to direct the sp-C-N bond formation, leading to a structurally diverse array of ynamides including macrocyclic ynamides via an intramolecular amidation. Given the surging interest in ynamide chemistry, this atom economical synthesis of ynamides should invoke further attention from the synthetic organic community.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo060230hDOI Listing

Publication Analysis

Top Keywords

alkynyl bromides
8
synthesis ynamides
8
intramolecular amidation
8
macrocyclic ynamides
8
ynamides
5
copperii-catalyzed amidations
4
amidations alkynyl
4
bromides general
4
general synthesis
4
ynamides z-enamides
4

Similar Publications

Herein, we report the -generated transient bromoiodane-mediated brominative annulation of 2-alkynyl arylimidate for the synthesis of 4-bromoisoquinolines at room temperature. Using a simple hypervalent iodine reagent PIDA as a mild oxidant and potassium bromide as the halogen source, a broad range of valuable 4-bromoisoquinolines can be synthesized in excellent yields. The reaction features readily available chemicals, mild metal-free conditions, and high functional group tolerance, providing an efficient alternative for the construction of halogenated isoquinolines.

View Article and Find Full Text PDF

Polyfluoroaryl ethers represent an important framework of biologically active molecules and materials. Owing to the strong bond dissociation energy of C-F bond, selectivity and other issues, transition metal-catalyzed synthesis of polyfluoroaryl ethers from perfluoroarenes via the activation of C-F bond is challenging and underdeveloped, as compared to the well-documented C-O bond formation starting from aryl iodides, aryl bromides or aryl chlorides. Herein, an unprecedented Pd-catalyzed defluorinative etherification for the synthesis of polyfluoroaryl ether skeletons using hydrobenzoxazoles as phenol surrogate, has been reported.

View Article and Find Full Text PDF

Alkynes are a crucial class of materials with application across the wide range of chemical disciplines. The alkynylation of alkyl halides presents an ideal strategy for assembling these materials. Current methods rely on the intrinsic electrophilic nature of alkyl halides to couple with nucleophilic acetylenic systems, but these methods faces limitations in terms of applicability and generality.

View Article and Find Full Text PDF
Article Synopsis
  • A new method for adding alkynyl groups to certain carbon-hydrogen (C-H) bonds next to nitrogen in tertiary amines has been developed using alkynyl bromides and visible light.
  • This technique successfully coupled various types of secondary and tertiary amines with different alkynyl bromides, yielding 51 propargylamines with moderate to excellent results (31-80% yield).
  • The process likely works through a mechanism involving radical reactions, as indicated by early studies on how the reaction occurs.
View Article and Find Full Text PDF

Herein, we disclose a palladium-catalyzed cross-coupling of aryl bromides and chlorides with trimethylsilylalkynes under mild reaction conditions. This method utilizes commercially available and air stable palladium precatalysts and avoids the use of copper cocatalysts. Moreover, it allows for the synthesis of a wide range of disubstituted alkynes in high yields with excellent functional group tolerance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!