Acoustic structures in the alarm calls of Gunnison's prairie dogs.

J Acoust Soc Am

Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona 86011, USA.

Published: May 2006

Acoustic structures of sound in Gunnison's prairie dog alarm calls are described, showing how these acoustic structures may encode information about three different predator species (red-tailed hawk-Buteo jamaicensis; domestic dog-Canis familaris; and coyote-Canis latrans). By dividing each alarm call into 25 equal-sized partitions and using resonant frequencies within each partition, commonly occurring acoustic structures were identified as components of alarm calls for the three predators. Although most of the acoustic structures appeared in alarm calls elicited by all three predator species, the frequency of occurrence of these acoustic structures varied among the alarm calls for the different predators, suggesting that these structures encode identifying information for each of the predators. A classification analysis of alarm calls elicited by each of the three predators showed that acoustic structures could correctly classify 67% of the calls elicited by domestic dogs, 73% of the calls elicited by coyotes, and 99% of the calls elicited by red-tailed hawks. The different distributions of acoustic structures associated with alarm calls for the three predator species suggest a duality of function, one of the design elements of language listed by Hockett [in Animal Sounds and Communication, edited by W. E. Lanyon and W. N. Tavolga (American Institute of Biological Sciences, Washington, DC, 1960), pp. 392-430].

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.2185489DOI Listing

Publication Analysis

Top Keywords

acoustic structures
32
alarm calls
28
calls elicited
20
three predator
12
predator species
12
calls
10
acoustic
8
alarm
8
gunnison's prairie
8
structures
8

Similar Publications

Social vocalizations contain cues that reflect the motivational state of a vocalizing animal. Once perceived, these cues may in turn affect the internal state and behavioral responses of listening animals. Using the CBA/CAJ mouse model of acoustic communication, this study examined acoustic cues that signal intensity in male-female interactions, then compared behavioral responses to intense mating vocal sequences with those from another intense behavioral context, restraint.

View Article and Find Full Text PDF

Integrating Machine Learning for Predictive Maintenance on Resource-Constrained PLCs: A Feasibility Study.

Sensors (Basel)

January 2025

Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy.

This study investigates the potential of deploying a neural network model on an advanced programmable logic controller (PLC), specifically the Finder Opta™, for real-time inference within the predictive maintenance framework. In the context of Industry 4.0, edge computing aims to process data directly on local devices rather than relying on a cloud infrastructure.

View Article and Find Full Text PDF

Dynamic Interferometry for Freeform Surface Measurement Based on Machine Learning-Configured Deformable Mirror.

Sensors (Basel)

January 2025

Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China.

Optical freeform surfaces are widely used in imaging and non-imaging systems due to their high design freedom. In freeform surface manufacturing and assembly, dynamic freeform surface measurement that can guide the next operation remains a challenge. To meet this urgent need, we propose a dynamic interferometric method based on a machine learning-configured deformable mirror (DM).

View Article and Find Full Text PDF

Mastoidectomy is critical in acoustic neuroma surgery, where precise planning of the bone milling area is essential for surgical navigation. The complexity of representing the irregular volumetric area and the presence of high-risk structures (e.g.

View Article and Find Full Text PDF

This study addresses the challenges of electromagnetic interference and unstable signal transmission encountered by traditional sensors in detecting partial discharge (PD) within stator slots of large motors. A novel Extrinsic Fabry-Perot Interferometer (EFPI) sensor with a vibration-coupling air gap was designed to enhance the narrowband resonant detection sensitivity for PD ultrasonic signals by optimizing the diaphragm structure and coupling interface. The sensor features a quartz diaphragm with a thickness of 20 μM, an effective constrained radius of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!