The progression of mammalian gametogenesis requires a precise balance between cell-cycle activities and elimination of defective gametogenic cells to ensure the perpetuation of species. Both spermatogonia and oogonia are stem cell populations committed to meiosis with the aim of generating haploid gametes for fertilization. At puberty, mitotically dividing spermatogonial cell cohorts maintain the ability of cell renewal and occupy niches in the seminiferous tubule. In contrast, mitotically dividing oogonial cell cohorts produced in the fetal ovary, are exclusively committed to meiosis and produce primordial follicles housing a primary oocyte surrounded by somatic follicular cells. A consistent physiological event during mammalian gametogenesis is the disposal of spermatogenic cells by apoptosis and ovarian follicles by atresia. Cyclin-dependent kinases (Cdks) and their cyclin partners coordinate the activities of the cell cycle. An additional cell-cycle regulatory component is the centrosome. The centrosome harbors regulatory proteins controlling the normal progression of the cell cycle. Changes in individual centrosome proteins can lead to cell-cycle arrest and a decrease in the genomic protective function of p53 that promotes apoptosis. Disruption of cyclin A1, Cdk2, and Cdk4 expression in transgenic mice results in infertility and gonadal atrophy. Cdk-cyclin complexes interact with regulatory proteins, which may fine-tune the activities of the complex. One of the many regulatory proteins is p12, a 115 amino acid growth suppressor polypeptide designated p12(CDK2AP1), partner of Cdk2 and with binding affinity to DNA polymerase alpha/primase. Overexpression of p12 is associated with testicular and ovarian atrophy without affecting fertility. Ectopic expression of p12 was driven by the keratin 14 promoter. Keratin 14 is the pairing partner of keratin 5 and both keratins are expressed in testis. The efficiency of keratin promoters in driving ectopic gonadal gene expression, the association of gonadal atrophy with the ectopic expression of a Cdk2 regulatory protein and the centrosome, as a reservoir of cell-cycle regulatory proteins, open new experimental opportunities to address still lingering questions concerning cell differentiation and division during mammalian gametogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrd.20536 | DOI Listing |
Sci Rep
January 2025
Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, 8000, Denmark.
Low fertility in cows leads to early removal from herds. Since reproductive traits are complex and have low heritability, genetic analysis can aid in improving reproduction. This study identified key genes linked to fertility by conducting genome- and transcriptome-wide association studies, RNA-seq analysis, meta-analysis, weighted gene co-expression network analysis, and functional enrichment analysis.
View Article and Find Full Text PDFAm J Reprod Immunol
January 2025
State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, China.
Background: Alterations in lipid metabolism were reported to impact human fertility; however, there is limited evidence on the association of lipid metabolism with embryo implantation as well as the etiology of recurrent implantation failure (RIF), especially regarding arachidonic acid metabolism.
Methods: Experimental verification research (16 RIF patients and 30 control patients) based on GEO database analysis (24 RIF patients and 24 control patients). The methods in bioinformatics included differential gene screening, functional enrichment analysis, protein-protein interaction network, cluster analysis, weighted gene co-expression network analysis, and so forth.
Reprod Biol Endocrinol
January 2025
Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark.
The production of spermatozoa, a process known as spermatogenesis, is primarily controlled by follicle-stimulating hormone (FSH) and luteinizing hormone (LH)-driven testosterone. LH acts on the Leydig cells, stimulating steroid production, predominantly testosterone, and activating critical inter-related spermatogenesis regulatory pathways. Despite evidence that exogenous gonadotropins containing LH activity can effectively restore spermatogenesis in males with hypogonadotropic hypogonadism, the use of these drugs to treat other forms of male infertility is the subject of an ongoing debate.
View Article and Find Full Text PDFCell Biochem Funct
January 2025
Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, Anhui, China.
The study of the mechanism of oligoasthenospermia, which is a major cause of male infertility, has been the focus of research in the field of male reproduction. TAp73, a member of the p53 family of oncogenes, is endowed with tumor-suppressing activity due to its structural and functional homology with p53. It has been found that TAp73, plays a key role in spermatogenesis and maintaining male reproduction.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt.
While ultraviolet C (UVC) radiation has beneficial applications, it can also pose risks to living organisms. Nevertheless, a detailed assessment of UVC radiation's effects on mammalian male reproductive physiology, including the underlying mechanisms and potential protective strategies, has not yet been accomplished. This study aimed to examine the critical roles of oxidative stress, autophagy, reproductive hormonal axis, and microRNAs in UVC-induced reproductive challenges in male rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!