An inability to self-regulate negative emotions appears to play a pivotal role in the genesis of major depressive disorder. This inability may be related to a dysfunction of the neural circuitry underlying emotional self-regulation. This functional magnetic resonance imaging study was conducted to test this hypothesis. Depressed individuals and controls were scanned while they attempted to voluntarily down-regulate sad feelings. The degree of difficulty experienced during down-regulation of sadness was higher in depressed individuals. Furthermore, there was greater activation in the right dorsal anterior cingulate cortex, right anterior temporal pole, right amygdala, and right insula in depressed individuals. These results suggest that emotional dysregulation in major depressive disorder is related to a disturbance in the neural circuitry of emotional self-regulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.wnr.0000220132.32091.9f | DOI Listing |
Front Neurosci
January 2025
Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
In the ventricular-subventricular-zone (V-SVZ) of the postnatal mammalian brain, immature neurons (neuroblasts) are generated from neural stem cells throughout their lifetime. These V-SVZ-derived neuroblasts normally migrate to the olfactory bulb through the rostral migratory stream, differentiate into interneurons, and are integrated into the preexisting olfactory circuit. When the brain is injured, some neuroblasts initiate migration toward the lesion and attempt to repair the damaged neuronal circuitry, but their low regeneration efficiency prevents functional recovery.
View Article and Find Full Text PDFFront Neurol
January 2025
Institution of Traditional Chinese Medicine Innovation Research, Shandong University of Traditional Chinese Medicine, Jinan, China.
Background: In nature, animals must learn to recognize danger signals and respond immediately to threats to improve their environmental adaptation. However, excessive fear responses can lead to diseases such as post-traumatic stress disorder, wherein traumatic events result in persistent traumatic memories. Therefore, erasing pathological fear memories is a crucial topic in neuroscience for understanding the nature of memories and treating clinically relevant diseases.
View Article and Find Full Text PDFJ Affect Disord
January 2025
Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China; Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China. Electronic address:
Previous research on major depressive disorder (MDD) has largely focused on cognitive biases and abnormalities in cortico-limbic circuitry during emotional face processing. However, it remains unclear whether these abnormalities start at early perceptual stages via subcortical pathways and how comorbid social anxiety influences this process. Here, we investigated subcortical mechanisms in emotional face processing using a psychophysical method that measures monocular advantage (i.
View Article and Find Full Text PDFElife
January 2025
Centre for Neuroscience, Indian Institute of Science, Bengaluru, India.
Stress is a potent modulator of pain. Specifically, acute stress due to physical restraint induces stress-induced analgesia (SIA). However, where and how acute stress and pain pathways interface in the brain are poorly understood.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Biology, McGill University, Montreal, QC, Canada.
The accurate and reliable performance of learned vocalizations (e.g., speech and birdsong) modulates the efficacy of communication in humans and songbirds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!