GPR39 receptor expression in the mouse brain.

Neuroreport

Department of Developmental and Cell Biology, University of California Irvine, Irvine, California 92697-4625, USA.

Published: May 2006

AI Article Synopsis

Article Abstract

GPR39, an orphan G protein-coupled receptor, has been recently identified as the receptor for the bioactive peptide obestatin. Obestatin is secreted from the stomach and acts as an anti-appetite hormone. This activity is induced whether obestatin is administered intraperitoneally or intracerebroventricularly. GPR39 is known to be expressed in the central nervous system but its precise localization is unknown. In view of the growing importance of this system, we decided to study the sites of GPR39 mRNA expression by in-situ hybridization. We find the highest levels of GPR39 mRNA in the amygdala, the hippocampus, and the auditory cortex and low levels in several other brain regions. Surprisingly, we find no expression of GPR39 in the hypothalamus, expected to be the site of the anorexigenic action of obestatin.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.wnr.0000215779.76602.93DOI Listing

Publication Analysis

Top Keywords

gpr39 mrna
8
gpr39
6
gpr39 receptor
4
receptor expression
4
expression mouse
4
mouse brain
4
brain gpr39
4
gpr39 orphan
4
orphan protein-coupled
4
protein-coupled receptor
4

Similar Publications

METTL3 inhibits microglial pyroptosis in neonatal hypoxia-ischemia encephalopathy by regulating GPR39 expression in an m6A-HuR-dependent manner.

Neuroscience

December 2024

Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China. Electronic address:

Background: Neonatal hypoxia-ischemia encephalopathy (HIE) is a significant reason for neonatal mortality and prolonged disability. We have previously revealed that GPR39 activation attenuates neuroinflammation in a neonatal HIE rat model. This study aimed to investigate whether GPR39 affected microglial pyroptosis post-HIE.

View Article and Find Full Text PDF

Objective: To explore the expressions of zinc homeostasis-related proteins, G protein-coupled receptor 39 (GPR39) and ANO1 mRNA in the sperm of patients with asthenozoospermia (AS), and analyze their correlation with sperm motility.

Methods: We collected semen samples from 82 male subjects with PR+NP < 40%, PR < 32% and sperm concentration > 15×10⁶/ml (the AS group, n = 40) or PR+NP ≥ 40%, PR ≥ 32% and sperm concentration > 15×10⁶/ml (the normal control group, n = 42). We analyzed the routine semen parameters and measured the zinc content in the seminal plasma using the computer-assisted sperm analysis system, detected the expressions of zinc transporters (ZIP13, ZIP8 and ZNT10), metallothioneins (MT1G, MT1 and MTF), GPR39, and calcium-dependent chloride channel protein (ANO1) in the sperm by real-time quantitative PCR (RT qPCR), examined free zinc distribution in the sperm by laser confocal microscopy, and determined the expressions of GPR39 and MT1 proteins in the sperm by immunofluorescence staining, followed by Spearman rank correlation analysis of their correlation with semen parameters.

View Article and Find Full Text PDF

Targeting of G protein-coupled receptor 39 alleviates angiotensin II-induced renal damage by reducing ribonucleotide reductase M2.

Exp Cell Res

July 2024

Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, PR China; Department of Cardiology, Jiangsu Province People's Hospital, Nanjing, Jiangsu, PR China. Electronic address:

Renal fibrosis, apoptosis and autophagy are the main pathological manifestations of angiotensin II (Ang II)-induced renal injury. G protein-coupled receptor 39 (GPR39) is highly expressed in various tissues including the kidney, but its role in the kidney is entirely unclear. This study was performed to investigate the underlying mechanism by which knockdown of GPR39 alleviated Ang II-induced renal injury.

View Article and Find Full Text PDF

A prior investigation revealed that a lack of Zinc (Zn) could hinder intestinal cell proliferation in broiler chickens; however, the mechanisms responsible for this effect remain unclear. We aimed to investigate the possible mechanisms of dietary Zn deficiency in inhibiting the jejunal cell proliferation of broilers. For this study, a total of 112 chickens (21 days old) were randomly divided into two treatments (seven replicate cages per treatment, eight chickens per replicate cage): the control group (CON) and the Zn deficiency group.

View Article and Find Full Text PDF

Background: In this study, we aimed to investigate the potential of miR-19a as a biomarker of OSCC and its underlying molecular mechanisms.

Methods: We collected serum and saliva samples from 66 OSCC patients and 66 healthy control subjects. Real-time PCR analysis, bioinformatic analysis and luciferase assays were performed to establish a potential signaling pathway of miR-19a/GRK6/GPCRs/PKC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!