We have previously restored ambulation in paraplegics by performing hybrid functional electrical stimulation (FES) with medial linkage knee-ankle-foot orthosis (MLKAFO). The most common MLKAFO (hinge-type MLKAFO) has the hypothetical axis that is lower than the physiological hip joint position, resulting in slow velocity and short step length. A new MLKAFO (sliding-type MLKAFO), which uses sliding medial linkages, has been developed to correct the axial discrepancy of the hinge-type MLKAFO that causes limited hip joint excursion. There have been reports of instability associated with sliding medial linkages, but the mechanism of this instability is unclear. The purpose of the present study was to evaluate the effects of FES with MLKAFOs on ambulation in paraplegics. Two complete paraplegic patients (levels T8 and T12, respectively) participated in this study. Kinematics data during ambulation were obtained using a motion analysis system. We measured gait velocity and hip progression during the standing phase. The sliding-type MLKAFO produced faster gait velocity than did the hinge-type MLKAFO, but it caused pelvis instability without FES. Pelvis instability was controlled by hybrid FES using the sliding-type MLKAFO. With hybrid FES, the sliding-type MLKAFO provides better gait performance than the hinge-type MLKAFO, but the hinge-type MLKAFO provides greater pelvis stability during walking. Moreover, FES provides sufficient propulsion to allow the complete paraplegics to walk.

Download full-text PDF

Source
http://dx.doi.org/10.1620/tjem.209.117DOI Listing

Publication Analysis

Top Keywords

hinge-type mlkafo
20
sliding-type mlkafo
16
mlkafo
12
hybrid functional
8
functional electrical
8
electrical stimulation
8
medial linkage
8
linkage knee-ankle-foot
8
complete paraplegics
8
ambulation paraplegics
8

Similar Publications

We have previously restored ambulation in paraplegics by performing hybrid functional electrical stimulation (FES) with medial linkage knee-ankle-foot orthosis (MLKAFO). The most common MLKAFO (hinge-type MLKAFO) has the hypothetical axis that is lower than the physiological hip joint position, resulting in slow velocity and short step length. A new MLKAFO (sliding-type MLKAFO), which uses sliding medial linkages, has been developed to correct the axial discrepancy of the hinge-type MLKAFO that causes limited hip joint excursion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!