In insects, steroid hormones named ecdysteroids elicit molting and metamorphosis. The prothoracic gland (PG) is a predominant source of ecdysteroids, where their biosynthesis (ecdysteroidogenesis) is regulated by several neuropeptides. Here, we report that FMRFamide-related peptides (FaRPs) regulate ecdysteroidogenesis through direct innervation of the PG in the silkworm Bombyx mori. We purified a previously uncharacterized Bombyx FaRP, DPSFIRFamide, and identified the corresponding Bombyx FMRFamide gene (Bommo-FMRFamide, BRFa), which encodes three additional FaRPs. All BRFa peptides suppressed ecdysteroidogenesis in the PG by reducing cAMP production by means of the receptor for Bommo-myosuppressin, another FaRP we have previously shown to act as a prothoracicostatic factor. BRFa is predominantly expressed in neurosecretory cells of thoracic ganglia, and the neurons in the prothoracic ganglion innervate the PG to supply all four peptides to the gland surface. Electrophysiological recordings during development confirmed the increased firing activity of BRFa neurons in stages with low PG activity and decreased ecdysteroid levels in the hemolymph. To our knowledge, this study provides the first report of peptides controlling ecdysteroidogenesis by direct innervation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1482630PMC
http://dx.doi.org/10.1073/pnas.0511196103DOI Listing

Publication Analysis

Top Keywords

ecdysteroidogenesis direct
8
direct innervation
8
regulation insect
4
insect steroid
4
steroid hormone
4
hormone biosynthesis
4
biosynthesis innervating
4
innervating peptidergic
4
peptidergic neurons
4
neurons insects
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!