Clathrin-coated vesicles mediate sorting and intracellular transport of membrane-bound proteins. The formation of these coats is initiated by the assembly of adaptor proteins (AP), which specifically bind to membrane cargo proteins via recognition of endocytic sorting motifs. The lipid signaling molecule phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) is critical for this process, as it serves as both a targeting and regulatory factor. PI(4,5)P(2) is synthesized by type I phosphatidylinositol phosphate kinases (PIPKI). We have discovered a direct interaction between the mu2-subunit of the AP2 complex and PIPKIgamma661 via a yeast two-hybrid screen. This interaction was confirmed using both the mu2-subunit in glutathione S-transferase pulldowns and via coimmunoprecipitation of endogenous PIPKIgamma661 with the AP2 complex from HEK293 cells. The interaction is mediated, in vivo, by a tyrosine-based motif in the 26-amino acid tail of PIPKIgamma661. Because AP2 regulates endocytosis of transferrin receptor from the plasma membrane, we also examined a role for PIPKIgamma661 using a flow cytometry endocytosis assay. We observed that stable expression of wild type PIPKIgamma661 in Madin-Darby canine kidney cells enhanced transferrin uptake, whereas stable expression of kinase-dead PIPKIgamma661 had an inhibitory effect. Neither condition affected the overall cellular level of PI(4,5)P(2). RNA interference-based knockdown of PIPKIgamma661 in HeLa cells also had an inhibitory effect on transferrin endocytosis using the same assay system. Collectively, this evidence implies an important role for PIPKIgamma661 in the AP2-mediated endocytosis of transferrin.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M601465200DOI Listing

Publication Analysis

Top Keywords

phosphatidylinositol phosphate
8
ap2 regulates
8
regulates endocytosis
8
ap2 complex
8
pipkigamma661
8
pipkigamma661 ap2
8
endocytosis transferrin
8
role pipkigamma661
8
endocytosis assay
8
stable expression
8

Similar Publications

Analysis of key lncRNA related to Parkinson's disease based on gene co-expression weight networks.

Neurosciences (Riyadh)

January 2025

From the School of Clinical Medicine (Liang, Luo, Jia), Shandong Second Medical University, Weifang, from the Department of Neurology (Liang, Zhao, Lin, Li, Luo, Jia) , Beijing Shijingshan Hospital, Shijingshan Teaching Hospital of Capital Medical University, Beijing, and from the Department of Neurology (Li), Affiliated Hospital of Weifang Medical University, Weifang, China.

Objectives: To identify a key Long chain non-coding RNAs (lncRNAs) related to PD and provide a new perspective on the role of LncRNAs in Parkinson's disease (PD) pathophysiology.

Methods: Our study involved analyzing gene chips from the substantia nigra and white blood cells, both normal and PD-inclusive, in the Gene Expression Omnibus (GEO) database, utilizing a weighted gene co-expression network analysis (WGCNA). The technique of WGCNA facilitated the examination of differentially expressed genes (DEGs) in the substantia nigra and the white blood cells of individuals with PD.

View Article and Find Full Text PDF

Regulation of INPP5E in Ciliogenesis, Development, and Disease.

Int J Biol Sci

January 2025

Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, USA.

Inositol polyphosphate-5-phosphatase E (INPP5E) is a 5-phosphatase critically involved in diverse physiological processes, including embryonic development, neurological function, immune regulation, hemopoietic cell dynamics, and macrophage proliferation, differentiation, and phagocytosis. Mutations in cause Joubert and Meckel-Gruber syndromes in humans; these are characterized by brain malformations, microphthalmia, situs inversus, skeletal abnormalities, and polydactyly. Recent studies have demonstrated the key role of INPP5E in governing intracellular processes like endocytosis, exocytosis, vesicular trafficking, and membrane dynamics.

View Article and Find Full Text PDF

PIKFYVE deficiency induces vacuole-like cataract via perturbing late endosome homeostasis.

Biochem Biophys Res Commun

December 2024

Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China. Electronic address:

Phosphoinositide kinase, FYVE-type zinc finger containing (PIKFYVE) was recently identified as a causative gene for cataract. Pikfyve phosphatidylinositol phosphate kinase domain-deficient (pikfyve) zebrafish lens and PIKFYVE-inhibited human lens epithelial cells developed vacuoles, colocalized with late endosome marker RAB7. In this study, the pikfyvezebrafish with vacuole-like cataract underwent transcriptomic and proteomic analyses to explore the underlying mechanisms of vacuole formation.

View Article and Find Full Text PDF

Diabetes is associated with the dysfunction of glucagon-producing pancreatic islet α-cells, although the underlying mechanisms regulating glucagon secretion and α-cell dysfunction remain unclear. While insulin secretion from pancreatic β-cells has long been known to be partly controlled by intracellular phospholipid signaling, very little is known about the role of phospholipids in glucagon secretion. Here we show that TMEM55A, a lipid phosphatase that dephosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-5-phosphate (PI5P), regulates α-cell exocytosis and glucagon secretion.

View Article and Find Full Text PDF

Background: Sponges harbor microbial communities that play crucial roles in host health and ecology. However, the genetic adaptations that enable these symbiotic microorganisms to thrive within the sponge environment are still being elucidated. To understand these genetic adaptations, we conducted a comparative genomics analysis on 350 genomes of Actinobacteriota, a phylum commonly associated with sponges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!