A novel strain of Saccharomyces cerevisiae in which the GAL1 gene was replaced with the GAL4 gene has been designed. The GAL1 gene encodes galactokinase (Gal1p), an enzyme that phosphorylates galactose. Gal4p activates genes necessary for galactose metabolism and is among the best characterized transcription activators. Here we describe a GAL recombinant strain that contains the GAL4 gene fused to the natural GAL1 promoter in addition to the normal constitutively expressed chromosomal GAL4 gene. To evaluate whether both gratuitous induction and regulated overexpression of the positive regulator improve protein production, low- and multi-copy expression vectors containing the GAL1 promoter fused to the structural gene for green fluorescent protein (GFP) were introduced into wild-type, gal1 and GAL recombinant strains. In yeast containing the multi-copy plasmid there was an approximately 3.3-fold increase in GFP production in the gal1 mutant strain. Moreover, in the resulting GAL recombinant cells a 4.6-fold increase in fluorescence relative to the wild-type was observed. The GAL recombinant strain should therefore prove useful for maximal expression of heterologous genes driven by a galactose-inducible promoter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioeng.2006.03.001 | DOI Listing |
J Leukoc Biol
January 2025
Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
Macrophages play a crucial role in the immune response during allograft rejection in organ transplantation. Therefore, our study aimed to explore the genomic features of macrophages in mouse heart transplants and use single-cell RNA sequencing to investigate Galectin-9 (Gal-9, Lgals9), a lectin that can mediate the activation and differentiation of immune cells through ligand-receptor interactions, and the effects of its regulation in transplantation. We discovered a new subset of macrophages called "Myoz2+ macrophages", which specifically expressed genes related to myocardial contraction.
View Article and Find Full Text PDFClin Transl Med
January 2025
Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Background: Fabry disease is an X-linked lysosomal storage disorder due to a deficiency of α-galactosidase A (α-gal A) activity. Our goal was to correct the enzyme deficiency in Fabry patients by transferring the cDNA for α-gal A into their CD34+ hematopoietic stem/progenitor cells (HSPCs). Overexpression of α-gal A leads to secretion of the hydrolase; which can be taken up and used by uncorrected bystander cells.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Aix Marseille Univ, INSERM, MMG (Marseille Medical Genetics), Marseille, France.
Anterior Hox genes are required for genetic identity and anterior posterior patterning of the second heart field (SHF), which contributes to the formation of the embryonic heart in vertebrates. Defective contribution of SHF cells to the arterial or venous pole of the heart is often associated with severe congenital heart defects. The mouse Cre-lox system allows the activation of expression of any gene of interest in restricted tissues.
View Article and Find Full Text PDFExpert Opin Drug Saf
December 2024
Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: Fabry disease (FD), an X-linked lysosomal disorder, is marked by a lack of alpha-galactosidase A (α-Gal A). Agalsidase beta, a recombinant form of α-Gal A, is fundamental to enzyme replacement therapy for FD but requires close monitoring for adverse events (AEs).
Research Design And Methods: This study retrospectively analyzed the Food and Drug Administration Adverse Event Reporting System (FAERS) database for agalsidase beta-related AEs.
J Adv Res
December 2024
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, Fourth Military Medical University, No.145 Western Changle Road, Xi'an, Shaanxi 710032, China. Electronic address:
Introduction: Aging influences the regenerative and reparative functions of dental pulp, and an in-depth and complete understanding of aged dental pulp is highly important.
Objective: This study aimed to explore the heterogeneity of young and aged dental pulp tissue via single-cell RNA sequencing (scRNA-seq), search novel markers of aged dental pulp, and further explore their mechanism.
Methods: ScRNA-seq was employed to analyze the heterogeneity of young and aged dental pulp tissue, and immunohistochemical staining was used to detect new marker Insulin-like Growth Factor Binding Protein 7 (IGFBP7) in aged dental pulp.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!