In continuation of our recent observations indicating the presence of a lone calcineurin-dependent response element (CDRE) in the -3730bp upstream region of copper-induced metallothionein (CuMT) gene of Neurospora [K.S. Kumar, S. Dayananda, C. Subramanyam, Copper alone, but not oxidative stress, induces copper-metallothionein gene in Neurospora crassa, FEMS Microbiol. Lett. 242 (2005) 45-50], we isolated and characterized the CDRE-binding protein. The cloned upstream region of CuMT gene was used as the template to specifically amplify CDRE element, which was immobilized on CNBr-activated Sepharose 4B for use as the affinity matrix to purify the CDRE binding protein from nuclear extracts obtained from Neurospora cultures grown in presence of copper. Two-dimensional gel electrophoresis of the affinity purified protein revealed the presence of a single 17kDa protein, which was identified and characterized by MALDI-TOF. Peptide mass finger printing of tryptic digests and analysis of the 17kDa protein matched with the regulatory beta-subunit of calcineurin (Ca(2+)-calmodulin dependent protein phosphatase). Parallel identification of nuclear localization signals in this protein by in silico analysis suggests a putative role for calcineurin in the regulation of CuMT gene expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2006.05.010 | DOI Listing |
Methods Mol Biol
June 2024
School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China.
Dynamic and reversible N-methyladenosine (mA) modifications are associated with many essential cellular functions as well as physiological and pathological phenomena. In-depth study of mA co-functional patterns in epi-transcriptomic data may help to understand its complex regulatory mechanisms. In this chapter, we describe several biclustering mining algorithms for epi-transcriptomic data to discover potential co-functional patterns.
View Article and Find Full Text PDFJ Hazard Mater
May 2024
School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China. Electronic address:
The precise mechanism behind the association between plants' reactions to cadmium (Cd) stress and brassinosteroid (BR) remains unclear. In the current investigation, Cd stress quickly increased the endogenous BR concentration in the rice roots. Exogenous BR also increased the hemicellulose level in the root cell wall, which in turn increased its capacity to bind Cd.
View Article and Find Full Text PDFComput Biol Med
November 2023
School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China. Electronic address:
Environ Pollut
September 2023
Institute of Environmental Sciences (CML), Leiden University, Leiden, 2300 RA, the Netherlands; Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven, 3720 BA, the Netherlands. Electronic address:
In the current industrial scenario, chromium (Cr) as a metal is of great importance but poses a major threat to the ecosystem because of its toxicity, but fewer studies have been conducted on its effects and alleviation strategies by using nanoparticles (NPs) and plant growth promoting rhizobacteria (PGPR). Taking into consideration the positive effects of silver⎯nanoparticles (Ag⎯NPs) and (HAS31) rhizobacteria in reducing Cr toxicity in plants, the present study was conducted. A pot experiment was conducted to determine the effects of single and/or combined application of different levels [0 (no Ag⎯NPS), 15 and 30 mM] of Ag⎯NPs and HAS31 [0 (no HAS31), 50 g and 100 g] on Cr accumulation, morpho-physiological and antioxidative defense attributes of barley (Hordeum vulgare L.
View Article and Find Full Text PDFMicroorganisms
January 2023
Jiangsu Key Laboratory of Coal-Based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, CUMT, Xuzhou 221008, China.
Biogenic coalbed methane (CBM) is an important alternative energy that can help achieve carbon neutrality. Accordingly, its exploration and development have become a research hotspot in the field of fossil energy. In this review, the latest detection technologies for and experimental research on biogenic CBM in China in recent decades are summarized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!