The identification of potential protein binding sites (cis-regulatory elements) in the upstream regions of genes is key to understanding the mechanisms that regulate gene expression. To this end, we present a simple, efficient algorithm, BEAM (beam-search enumerative algorithm for motif finding), aimed at the discovery of cis-regulatory elements in the DNA sequences upstream of a related group of genes. This algorithm dramatically limits the search space of expanded sequences, converting the problem from one that is exponential in the length of motifs sought to one that is linear. Unlike sampling algorithms, our algorithm converges and is capable of finding statistically overrepresented motifs with a low failure rate. Further, our algorithm is not dependent on the objective function or the organism used. Limiting the space of candidate motifs enables the algorithm to focus only on those motifs that are most likely to be biologically relevant and enables the algorithm to use direct evaluations of background frequencies instead of resorting to probabilistic estimates. In addition, limiting the space of candidate motifs makes it possible to use computationally expensive objective functions that are able to correctly identify biologically relevant motifs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/cmb.2006.13.686 | DOI Listing |
J Biol Chem
January 2025
Indiana University School of Medicine, Indianapolis, Indiana; IU Simon Comprehensive Cancer Center, Indianapolis, Indiana; R.L. Roudebush Indianapolis VA Medical Center, Indianapolis, Indiana. Electronic address:
The Hhex gene encodes a transcription factor that is important for both embryonic and post-natal development, especially of hematopoietic tissues. Hhex is one of the most common sites of retroviral integration in mouse models. We found the most common integrations in AKXD (recombinant inbred strains) T-ALLs occur 57-61kb 3' of Hhex and activate Hhex gene expression.
View Article and Find Full Text PDFImmunity
January 2025
Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilian-University (LMU), Munich, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (MHA), Munich, Germany. Electronic address:
Common genetic variants in a conserved cis-regulatory element (CRE) at histone deacetylase (HDAC)9 are a major risk factor for cardiovascular disease, including stroke and coronary artery disease. Given the consistency of this association and its proinflammatory properties, we examined the mechanisms whereby HDAC9 regulates vascular inflammation. HDAC9 bound and mediated deacetylation of NLRP3 in the NACHT and LRR domains leading to inflammasome activation and lytic cell death.
View Article and Find Full Text PDFAnnu Rev Entomol
January 2025
Department of Biology and Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico.
Novel traits in the order Lepidoptera include prolegs in the abdomen of larvae, scales, and eyespot and band color patterns in the wings of adults. We review recent work that investigates the developmental origin and diversification of these four traits from a gene-regulatory network (GRN) perspective. While prolegs and eyespots appear to derive from distinct ancestral GRNs co-opted to novel body regions, scales derive from in situ modifications of a sensory bristle GRN.
View Article and Find Full Text PDFTranscriptional silencers are -regulatory elements that downregulate the expression of target genes. Although thousands of silencers have been identified experimentally, a predictive chromatin signature of silencers has not been found. H4K20me1 previously was reported to be highly enriched among human silencers, but our reanalysis of those data using an appropriate background revealed that the enrichment is only marginal.
View Article and Find Full Text PDFDouble-strand breaks represent the most dangerous form of DNA damage, and in resting cells, these breaks are sealed via the non-homologous end joining (NHEJ) factor Ligase IV (LIG4). Excessive NHEJ may be genotoxic, necessitating multiple mechanisms to control NHEJ activity. However, a clear mechanism of transcriptional control for them has not yet been identified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!