In the vertebrate retina, rods mediate twilight vision and cones mediate daylight vision. Their photoresponse characteristics are different. The light-sensitivity of a cone is 10(2)-10(3) times lower than that of a rod. In addition, the photoresponse time course is much faster in cones. The mechanism characterizing cone photoresponses has not been known mainly because of the difficulty in isolating cones in large quantities to perform biochemistry. Recently, we developed a method to purify cones from carp retina using a density gradient, which made it possible to analyze the differences in the molecular mechanism of phototransduction between rods and cones. The results showed that signal amplification in cones is less effective, which explains the lower light-sensitivity of cones. The results also showed that visual pigment phosphorylation, a quenching mechanism of light-activated visual pigment, is much more rapid in cones than in rods. The rapid phosphorylation in cones is attributed to a very high total kinase activity in cones. Because of this high activity, cone pigment is readily phosphorylated even at very high bleaching levels, which probably explains why cone photoresponses recover quickly. Based on these findings, the molecular mechanisms of the differences in the photoresponse characteristics between rods and cones are outlined.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1562/2006-02-28-IR-823 | DOI Listing |
Neurophotonics
July 2024
University of Michigan, Department of Biomedical Engineering, Ann Arbor, Michigan, United States.
Significance: Many techniques exist for screening retinal phenotypes in mouse models in vision research, but significant challenges remain for efficiently probing higher visual centers of the brain. Photoacoustic computed tomography (PACT), with optical sensitivity to hemodynamic response (HR) in brain and ultrasound resolution, provides unique advantages in comprehensively assessing higher visual function in the mouse brain.
Aim: We aim to examine the reliability of PACT in the functional phenotyping of mouse models for vision research.
J Theor Biol
September 2024
Centurion University of Technology and Management, Bhubaneswar, OR, India. Electronic address:
Background: Iron-induced oxidative stress was thought to be the reason why the a-wave amplitude of the electroretinogram (ERG) dropped when iron ions were present. It is assumed that reactive oxygen species (ROS) are generated in the presence of iron ions, and this leads to a decrease in hyperpolarization of the photoreceptor. It is known that in age-related macular degeneration (AMD), sodium iodate can induce oxidative stress, apoptosis, and retinal damage, which mimic the effects of clinical AMD.
View Article and Find Full Text PDFSci Rep
May 2024
Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, School of Science/IQUIBICEN, University of Buenos Aires/CONICET, Buenos Aires, Argentina.
In the animal kingdom, threat information is perceived mainly through vision. The subcortical visual pathway plays a critical role in the rapid processing of visual information-induced fear, and triggers a response. Looming-evoked behavior in rodents, mimicking response to aerial predators, allowed identify the neural circuitry underlying instinctive defensive behaviors; however, the influence of disk/background contrast on the looming-induced behavioral response has not been examined, either in rats or mice.
View Article and Find Full Text PDFProc Biol Sci
May 2024
Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia.
The ambient daylight variation is coded by melanopsin photoreceptors and their luxotonic activity increases towards midday when colour temperatures are cooler, and irradiances are higher. Although melanopsin and cone photoresponses can be mediated via separate pathways, the connectivity of melanopsin cells across all levels of the retina enables them to modify cone signals. The downstream effects of melanopsin-cone interactions on human vision are however, incompletely understood.
View Article and Find Full Text PDFIn the animal kingdom, threat information is perceived mainly through vision. The subcortical visual pathway plays a critical role in the rapid processing of visual information-induced fear, and triggers a response. Looming-evoked behavior in rodents, mimicking response to aerial predators, allowed identify the neural circuitry underlying instinctive defensive behaviors; however, the influence of disk/background contrast on the looming-induced behavioral response has not been examined, either in rats or mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!