Finite element analysis was performed to evaluate stress distribution in maxillary central incisors treated endodontically and restored with a post and an all-ceramic crown. Tensile stress at tooth root was analyzed using two-dimensional finite element models with different post diameters and lengths. One post length was 1/3 of the root (short), while the other was 2/3 of the root (long); one post diameter was 1/3 of the root (narrow), while the other was 2/3 of the root (wide). The following combinations were used for posts and cores: gold alloy cast post and core, commercial stainless steel post and resin core, and fiber post and resin core. Results showed that the fiber post produced less stress on the root dentin around the post tip than did the metal posts. This finding thus suggested that to reduce the stresses that cause root fracture, a long, thin fiber post should be used.

Download full-text PDF

Source
http://dx.doi.org/10.4012/dmj.25.145DOI Listing

Publication Analysis

Top Keywords

fiber post
12
post
11
finite element
8
1/3 root
8
2/3 root
8
post resin
8
resin core
8
core fiber
8
root
7
stress
4

Similar Publications

Quantum walks on photonic platforms represent a physics-rich framework for quantum measurements, simulations and universal computing. Dynamic reconfigurability of photonic circuitry is key to controlling the walk and retrieving its full operation potential. Universal quantum processing schemes based on time-bin encoding in gated fibre loops have been proposed but not demonstrated yet, mainly due to gate inefficiencies.

View Article and Find Full Text PDF

Sarcolemma resilience and skeletal muscle health require O-mannosylation of dystroglycan.

Skelet Muscle

January 2025

Department of Molecular Physiology and Biophysics, and Department of Neurology, Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.

Background: Maintaining the connection between skeletal muscle fibers and the surrounding basement membrane is essential for muscle function. Dystroglycan (DG) serves as a basement membrane extracellular matrix (ECM) receptor in many cells, and is also expressed in the outward-facing membrane, or sarcolemma, of skeletal muscle fibers. DG is a transmembrane protein comprised of two subunits: alpha-DG (α-DG), which resides in the peripheral membrane, and beta-DG (β-DG), which spans the membrane to intracellular regions.

View Article and Find Full Text PDF

To get insight into the thawing and salting in recovery and protection mechanisms on quality in frozen meat after subsequent cooking. The myofiber morphological-water evolution and quality changes in beef during freezing-thawing-cooking and freezing-cooking treatments were investigated. The cooking losses of fresh-cooked, frozen-cooked, and frozen-thawed-cooked samples were 27.

View Article and Find Full Text PDF

Purpose: To investigate how varying ferrule heights and the number of glass fiber posts affect fracture resistance and behavior of endodontically treated maxillary first premolars with substantial loss of tooth structure.

Materials And Methods: Twenty-four extracted endodontically treated human maxillary first premolars were divided into three groups (n = 8) based on ferrule height and post number. The groups were as follows: premolars of 2 mm ferrule height that were restored with single posts (control group), premolars of 0.

View Article and Find Full Text PDF

Inactivation of ATG13 stimulates chronic demyelinating pathologies in muscle-serving nerves and spinal cord.

Immunol Res

January 2025

Milwaukee Institute for Drug Discovery, Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI, 53211, USA.

Chronic muscle fatigue is a condition characterized by debilitating muscle weakness and pain. Based on our recent finding to study the potential effect of mTOR on ATG13 inactivation in chronic muscle fatigue, we report that biweekly oral administration with MHY1485, a potent inducer of mTOR, develops chronic illness in mice resulting in severe muscle weakness. As a mechanism, we observed that MHY1485 feeding impaired ATG13-dependent autophagy, caused the infiltration of inflammatory M1 macrophages (Mφ), upregulated IL6 and RANTES by STAT3 activation, and augmented demyelination in muscle-serving nerve fibers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!