Using actin, alpha-lactalbumin and insulin as examples, it was shown that the formation of amorphous aggregates of proteins and amyloid fibrils leads to an increase in the rigidity of tryprophan and tyrosine residues micro-environment and, consequently, to the appearance of tryptophan (tyrosine) room temperature phosphorescence (RTP). RTP was used for examining a slow intramolecular mobility of native (G-, F-form) and inactivated (I) rabbit skeletal muscle actin during the process of GdnHCl induced protein unfolding. This method made it possible to confirm that an essentially unfolded intermediate precedes the formation of inactivated actin. It has been found that the kinetic intermediate generated at the early stage of protein denaturation has no tryptophan RTP, suggesting a high lability of its structure. Symbate changes of integral intensity (relative quantum yield) and the mean lifetime of RTP during the U*-->I transition suggest a gradual increase of the number of monomers incorporated in the associate (U*-->11...-->In...-->I15), which is accompanied by an increase of protein structural rigidity. The rate of inactivated actin formation (I-->I15) is shown to increase with the increase of protein concentration. It is shown that, no matter what method of inactivation was employed (1--2 M GdnHCl or 3.0-3.5 M urea, Ca2+ removal, incubation at 70 degrees C, refolding from completely unfolded state by dialysis from 8 M urea or 6 M GdnHCl), actin transition to the inactivated state is accompanied by a significant increase in both integral intensity and the mean lifetime of RTP, suggesting the rigid structure of inactivated actin. It is shown that the lifetime of inactivated actin RTP does not depend on GdnHCl concentration within the limits from 0 to 4 M. On using insulin and alpha-lactalbumin as examples, it is shown that RTP can be used in studies of fibrillogenesis and properties of amyloid fibrils.
Download full-text PDF |
Source |
---|
Diffuse gastric adenocarcinoma (DGAC) is an aggressive malignancy with limited therapeutic options, poor prognosis, and poorly understood biology. CRACD, an actin polymerization regulator, is often inactivated in gastric cancer, including DGAC. We found that genetic engineering of murine gastric organoids with ablation combined with mutation and loss induced aberrant cell plasticity, hyperproliferation, and hypermucinosis, the features that recapitulate DGAC transcriptional signatures.
View Article and Find Full Text PDFFood Chem X
January 2025
International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
Front Physiol
December 2024
NextGen Precision Health, University of Missouri, Columbia, MO, United States.
The Lim Kinase (LIMK) family of serine/threonine kinases is comprised of LIMK1 and LIMK2, which are central regulators of cytoskeletal dynamics via their well-characterized roles in promoting actin polymerization and destabilizing the cellular microtubular network. The LIMKs have been demonstrated to modulate several fundamental physiological processes, including cell cycle progression, cell motility and migration, and cell differentiation. These processes play important roles in maintaining cardiovascular health.
View Article and Find Full Text PDFRespir Res
December 2024
State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, 453007, China.
FASEB J
December 2024
Department of Immunology, Peking University School of Basic Medical Sciences; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!