The Venezuelan scorpion Tityus discrepans is known to cause human fatalities. We describe the first complete proteomic analysis of its venom. By HPLC 58 different fractions were obtained and 205 different components were identified by MS analysis. Components having molecular masses from 272 to 57 908 amu were found. Forty homogeneous components had their N-terminal amino acid sequence determined by Edman degradation, from which two new peptides named TdK2 and TdK3 (meaning T. discrepans (Td) K(+) channel toxins 2 and 3) were fully characterized. The first contains 34 amino acid residues with a molecular mass of 3451 amu, and the second has 36 amino acids with 3832 amu. Both peptides are tightly bound by three disulfide bridges. TdK2 was shown to block reversibly the Shaker B K(+)-channel expressed heterologously in Sf9 cells. The systematic number assigned to TdK2 is alpha-KTx-18.2 and that of TdK3 is alpha-KTx-18.3. Comparative analysis of the amino acid sequences found suggests that this venom contains peptides highly similar to those that block K(+) channels, as well as those that modify the gating mechanisms of Na(+) channels, found in other scorpions. Additionally, peptides similar to defensins were also identified.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.200500525DOI Listing

Publication Analysis

Top Keywords

amino acid
16
proteomic analysis
8
tityus discrepans
8
acid sequence
8
amino
5
analysis tityus
4
discrepans scorpion
4
scorpion venom
4
venom amino
4
acid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!