We recently established a technique to expand male germ line stem (GS) cells in long-term culture without losing their spermatogenic capacity. To gain insight into the genetic program of these cells, we compared the mRNA expression profile of GS cells with that of embryonic stem (ES) cells using DNA microarrays. We found 79 genes that were upregulated in GS cells compared to ES cells, including synaptonemal complex protein-1, deleted in azoospermia-like, ubiquitin-conjugating enzyme E2B, and ubiquitin carboxy-terminal hydrolase L1, all of which are functionally important for spermatogenesis. In addition, we identified a cDNA encoding the mouse ortholog of capillary morphogenesis gene (CMG)-1. CMG-1 transcripts were predominantly produced in spermatogonia and spermatocytes in mouse testis. When CMG-1 expression was attenuated in a mouse spermatocyte-derived cell line, GC-2spd(ts), by a target-specific short interfering RNA, the morphology of the cells was changed and the expression of cyclin D2 was abrogated. A reporter assay using a genomic region upstream of the mouse cyclin D2 gene revealed that this downmodulation occurs at the transcriptional level. We detected FLAG-tagged CMG-1 protein in the nuclei of transfected COS7 cells, suggesting that CMG-1 may play a unique role in the transcriptional regulation of the cyclin D2 gene. The upregulated GS genes identified in this study will provide useful information for the future investigation of spermatogonial stem cells and the early phase of male germ cell differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrd.20504DOI Listing

Publication Analysis

Top Keywords

stem cells
20
male germ
12
cells
11
capillary morphogenesis
8
morphogenesis gene
8
gene cmg-1
8
germ stem
8
cells embryonic
8
embryonic stem
8
cells compared
8

Similar Publications

Erythropoiesis, a remarkably dynamic and efficient process responsible for generating the daily quota of red blood cells (approximately 280 ± 20 billion cells per day), is crucial for maintaining individual health. Any disruption in this pathway can have significant consequences, leading to health issues. According to the World Health Organization, an estimated 25% of the global population presents symptoms of anemia.

View Article and Find Full Text PDF

Isolation of Human BAMBIhighMFGE8high Umbilical Cord-Derived Mesenchymal Stromal Cells.

J Vis Exp

January 2025

Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University;

Umbilical cord-derived mesenchymal stromal/stem cells (UC-MSCs) present low immunogenicity and potent immunomodulatory effects for treating various diseases. Human UC-MSCs are a heterogeneous population consisting of three main subpopulations with different cell shapes, proliferation rates, differentiation abilities, and immune regulatory functions. Previously, BAMBIMFGE8 UC-MSCs, the first subgroup successfully isolated from UC-MSCs were found to fail to alleviate lupus nephritis.

View Article and Find Full Text PDF

Microglia-mediated neuroinflammation plays a crucial role in Alzheimer's disease (AD). Tinosinenside A (Tis A) is a novel sesquiterpene glycoside isolated from the dried rattan stem of Tinospora sinensis (Lour.) Merr.

View Article and Find Full Text PDF

Background: Cell therapy demonstrates promising potential as a substitute therapeutic approach for liver cirrhosis. We have developed a strategy to effectively expand murine and human hepatocyte-derived liver progenitor-like cells (HepLPCs) in vitro. The primary objective of the present study was to apply HepLPCs to the treatment of liver cirrhosis and to elucidate the underlying mechanisms responsible for their therapeutic efficacy.

View Article and Find Full Text PDF

Nonunion is a significant complication in fracture management for surgeons. Salvianolic acid A (SAA), derived from the traditional Chinese plant Salviae miltiorrhizae Bunge (Danshen), exhibits notable anti-inflammatory and antioxidant properties. Although studies have demonstrated its ability to promote osteogenic differentiation, the exact mechanism of action remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!