3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") causes long-term disturbance of the serotonergic system. We examined the temporal, spatial, and cellular distribution of three molecular chaperones, Hsp27, Hsp72, and Hsp90, 3 and 7 days after treatment with 7.5, 15, and 30 mg/kg single intraperitoneal (i.p.) doses of MDMA in Dark Agouti rat brains. Furthermore, we compared the immunostaining patterns of molecular chaperones with serotonergic axonal-vulnerability evaluated by tryptophan-hydroxylase (TryOH) immunoreactivity and with astroglial-activation detected by GFAP-immunostaining. There was a marked reduction in TryOH-immunoreactive axon density after MDMA treatment in all examined areas at both time points. Three days after treatment, a significant dose-dependent increase in Hsp27-immunoreactive protoplasmic astrocytes was found in the cingulate, frontal, occipital, and pyriform cortex, and in the hippocampus CA1. However, there was no increase in astroglial Hsp27-immunoreactivity in the caudate putamen, lateral septal nucleus, or anterior hypothalamus. A significant increase in the GFAP immunostaining density of protoplasmic astrocytes was found only in the hippocampus CA1. In addition, numerous strong Hsp72-immunopositive neurons were found in some brain areas only 3 days after treatment with 30 mg/kg MDMA. Increased Hsp27-immunoreactivity exclusively in the examined cortical areas reveals that Hsp27 is a sensitive marker of astroglial response to the effects of MDMA in these regions of Dark Agouti rat brain and suggests differential responses in astroglial Hsp27-expression between distinct brain areas. The co-occurrence of Hsp27 and GFAP response exclusively in the hippocampus CA1 may suggest the particular vulnerability of this region. The presence of strong Hsp72-immunopositive neurons in certain brain areas may reflect additional effects of MDMA on nonserotonergic neurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cne.20994 | DOI Listing |
Commun Biol
January 2025
Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.
Aedes mosquitoes transmit pathogenic arthropod-borne (arbo) viruses, putting nearly half the world's population at risk. Blocking virus replication in mosquitoes is a promising approach to prevent arbovirus transmission, the development of which requires in-depth knowledge of virus-host interactions and mosquito immunity. By integrating multi-omics data, we find that heat shock factor 1 (Hsf1) regulates eight small heat shock protein (sHsp) genes within one topologically associated domain in the genome of the Aedes aegypti mosquito.
View Article and Find Full Text PDFInt J Antimicrob Agents
January 2025
School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China. Electronic address:
The prevalence of herpes simplex virus type 1 (HSV-1) infection and the emergence of drug-resistant HSV-1 strains posts a significant global health challenge, necessitating the urgent development of effective anti-HSV-1 drugs. As one of the most prevalent molecular chaperones, heat shock protein 90 α (Hsp90α) has been extensively demonstrated to regulate a range of viral infections, thus representing a promising antiviral target. In this study, we identified JD-13 as a novel Hsp90α inhibitor and explored its capability in inhibiting HSV-1 infection.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
Among the various causes of rhomboencephalitis, infection is the most common. However, conventional microbiological methods often yield negative results, making diagnosis challenging and leading to extensive, often inconclusive, diagnostics. Advanced molecular techniques like metagenomic next-generation sequencing (mNGS) offer a powerful and efficient approach to pathogen identification.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Agriculture, Guangxi University, Nanning 530004, China.
The increasing challenge of marine biofouling, mainly due to barnacle settlement, necessitates the development of effective antifoulants with minimal environmental toxicity. In this study, fifteen derivatives of brusatol were synthesized and characterized using C-NMR, H-NMR, and mass spectrometry. All the semi-synthesized compounds obtained using the Multi-Target-Directed Ligand (MTDL) strategy, when evaluated as anti-settlement agents against barnacles, showed promising activity.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
Plant pathogenic bacteria are responsible for a substantial number of plant diseases worldwide, resulting in significant economic losses. Bacteria are exposed to numerous stress factors during their epiphytic life and within the host. Their ability to survive in the host and cause symptomatic infections depends on their capacity to overcome stressors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!