Connective tissue growth factor (CTGF) plays a critical role in keloid pathogenesis by promoting collagen synthesis and deposition. Previous work suggested epithelial-mesenchymal interactions as a plausible factor affecting the expression of various growth factors and cytokines by both the epithelial and dermal mesenchymal cells. The aim of this study is to explore the role of epithelial-mesenchymal interactions in modulating CTGF expression. Immunohistochemistry was employed to check CTGF localization in skin tissue. Western blot assay was performed on total protein extracts from skin tissue, cell lysates and conditioned media to detect the basal/expression levels of CTGF. Study groups were subjected to serum stimulation (fibroblast-single cell culture) and pharmacological inhibitors targeted against mTOR (Rapamycin), Sp1 (WP631 and Mitoxanthrone), Smad3 (SB431542), and PI3K (LY294002). Increased localization of CTGF in the basal layer of keloid epidermis and higher expression of CTGF was observed in the keloid tissue extract. Interestingly, lower basal levels of CTGF was observed in fibroblast cell lysates cocultured with keloid keratinocytes compared to normal keratinocytes, while the conditioned media from the former culture consistently demonstrated a higher expression of secreted CTGF as compared to the latter group. These results demonstrate an important role of epithelial-mesenchymal interactions in the regulation of CTGF expression. Fibroblasts treated with inhibitors against mTOR, Sp1, Smad3, and PI3K demonstrated a reduced expression of CTGF, suggesting these signaling pathways to be important in the regulation of CTGF expression. Thus, revealing the therapeutic potentials for inhibitors that are selective for these factors in controlling CTGF expression in fibrotic conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.20668DOI Listing

Publication Analysis

Top Keywords

ctgf expression
16
ctgf
13
epithelial-mesenchymal interactions
12
connective tissue
8
tissue growth
8
growth factor
8
factor ctgf
8
keloid pathogenesis
8
expression
8
role epithelial-mesenchymal
8

Similar Publications

Luteolin is widely distributed phytochemical, a flavonoid, in kingdom plantae. Luteolin with potential antioxidant activity prevent ROS-induced damages and reduce oxidative stress which is mainly responsible in pathogenesis of many diseases. Several chemo preventive activities and therapeutic benefits are associated with luteolin.

View Article and Find Full Text PDF

Endothelial cell (EC)-specific CTGF/CCN2 Expression Increases EC Reprogramming and Atherosclerosis.

Matrix Biol

January 2025

Department of Surgery, Emory University, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Research Services, Atlanta VA Medical Center, Decatur, GA, USA. Electronic address:

Arterial endothelial cells (ECs) reside in a complex biomechanical environment. ECs sense and respond to wall shear stress. Low and oscillatory wall shear stress is characteristic of disturbed flow and commonly found at arterial bifurcations and around atherosclerotic plaques.

View Article and Find Full Text PDF

The mechanism of fibrosis at the patella-patellar tendon junction (PPTJ) was investigated using a rabbit overuse jumping model. Thiry-two female New Zealand White rabbits were randomly divided into control and jumping groups, and each group was further divided into four groups at 2, 4, 6, and 8 weeks. The rabbits in the jumping group jumped 150 times per day, 5 days per week.

View Article and Find Full Text PDF

The notochord is an axial structure required for the development of all chordate embryos, from sea squirts to humans. Over the course of more than half a billion years of chordate evolution, in addition to its structural function, the notochord has acquired increasingly relevant patterning roles for its surrounding tissues. This process has involved the co-option of signaling pathways and the acquisition of novel molecular mechanisms responsible for the precise timing and modalities of their deployment.

View Article and Find Full Text PDF

This study investigated the multifaceted benefits of water extract across various cell lines, including murine B16F1 melanoma cells, human keratinocyte HaCaT cells, and human follicle dermal papilla cells (HFDPCs), to assess its potential in skin health improvement. Initially, the antioxidant capacity of the extract was evaluated using the ABTS assay, revealing significant radical scavenging activity, indicating strong antioxidative properties. Subsequently, extract showed notable inhibition of α-MSH-enhanced melanin production in B16F1 cells without cell toxicity by suppressing tyrosinase expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!