Three SHOP-type catalysts, in which the C=C(O) double bond was substituted by electron-withdrawing substituents, [Ni{Ph2PC(R1)=C(R2)O}Ph(PPh3)] (2: R1,R2 = -C(Me)=NN(Ph)-; 3: R1 = CO2Et, R2 = Ph; 4: R1 = CO2Et, R2 = CF3), were assessed as ethylene-oligomerisation and -polymerisation catalysts and compared to Keim's complex, [Ni{Ph2PCH=C(Ph)O}Ph(PPh3)] (1). A rationale for the influence of the double-bond substituents of the P,O-chelate unit on the catalytic properties is proposed, on the basis of X-ray diffraction studies, spectroscopic data and DFT-B3 LYP calculations. Whatever their relative electron-withdrawing strength, the R1 and R2 substituents induce an increase in activity with respect to catalyst 1. For those systems in which the basicity of the oxygen atom is decreased relative to that of the phosphorus atom, the chain-propagation rate increases with respect to that for catalyst 1. Reduction of the basicity of the P relative to that of the O, however, induces higher chain-termination rates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.200600319 | DOI Listing |
Chemistry
January 2025
Politecnico di Milano, Department of Chemistry, Materials, Chemical Engineer., via Mancinelli 7, 20131, Milan, ITALY.
Molecular recognition mediated by s-hole interactions is enhanced as the electrostatic potential at the σ-hole becomes increasingly positive. Traditional methods to strengthen σ-hole donor ability of atoms such as halogens often involve covalent modifications, such as, introducing electron-withdrawing substituents (neutral or positively charged) or electrochemical oxidation. Metal coordination, a relatively underexplored approach, offers a promising alternative.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nankai University, Department of Chemistry, Weijin road, 300071, Tianjin, CHINA.
Localized surface plasmon resonance (LSPR) metals exhibit remarkable light-absorbing property and unique catalytic activity, attracting significant attention in photocatalysts recently. However, the practical application of plasmonic nanometal is hindered by challenge of energetic electrons extraction and low selectivity. The energetic carriers generated in nanometal under illumination have extremely short lifetimes, leading to rapid energy loss.
View Article and Find Full Text PDFCurr Org Synth
January 2025
Laboratoire de Chimie Organique (LR17ES08), Faculté des Sciences de Sfax, University of Sfax, Route de Soukra Km 3.5, BP 1171, 3000, Sfax, Tunisia.
Aim And Objective: It is well established that 4H-pyran derivatives hold a significant position in synthetic organic chemistry due to their diverse biological and pharmacological properties. This work aims to introduce a novel synthetic pathway for highly functionalized 4H-pyran derivatives, achieved through a 1,4-Michael addition followed by a cascade cyclization. This reaction is catalyzed by LiOH·H2O under ultrasonic irradiation in water, offering an efficient and environmentally friendly approach.
View Article and Find Full Text PDFJ Org Chem
January 2025
Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
The development of bioorthogonal reactions is expected to propel further advances in chemical biology. In this study, we demonstrate Staudinger-Diels-Alder (SDA) ligation as a candidate for a new bioorthogonal reaction. This reaction ligates two molecules via strong C-C bonds at room temperature.
View Article and Find Full Text PDFJ Org Chem
January 2025
N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, Moscow 119991, Russian Federation.
Comparison of the reactivity of sialyl chlorides and bromides based on -acetylneuraminic acid (Neu5Ac) and its deaminated analogue (KDN) in reactions with MeOH and -PrOH without a promoter revealed that the acetoxy group at C-5 in a molecule of a sialic acid glycosyl donor can destabilize the corresponding glycosyl cation making the S1-like reaction pathway unfavorable. A change to the S2-like reaction pathway ensures preferential formation of the α-glycoside.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!