Coordination of the carbocyclic ring of hydroquinones to electrophilic transition-metal fragments such as Mn(CO)3+ and Rh(COD)+ produces stable pi-bonded eta6-complexes that are activated to facile reversible deprotonation of the -OH groups. The deprotonations are accompanied by electron transfer to the transition metal, which acts as an internal oxidizing agent or electron sink. With manganese as the metal, the resulting eta5-semiquinone and eta4-quinone complexes have been used to synthesize one- two- and three-dimensional polymeric metal-organometallic coordination networks. With rhodium as the metal, the pi-quinonoid complexes have been demonstrated to play a unique role in multifunctional C-C coupling catalysis and in the synthesis of new organolithium reagents. Both classes of pi-quinonoid complexes appear to have significant applications in nanochemistry by providing an excellent vehicle for templating the directed self-assembly of nanoparticles into functional materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b602678hDOI Listing

Publication Analysis

Top Keywords

pi-quinonoid complexes
8
pi-bonded quinonoid
4
quinonoid transition-metal
4
complexes
4
transition-metal complexes
4
complexes coordination
4
coordination carbocyclic
4
carbocyclic ring
4
ring hydroquinones
4
hydroquinones electrophilic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!