Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Oxidative stress and inflammation are implicated in the pathogenesis of cisplatin-induced nephrotoxicity. l-2-oxothiazolidine-4-carboxylic acid (OTC) is a cysteine prodrug, and increases cellular glutathione (GSH). OTC is converted to cysteine by the intracellular enzyme, oxoprolinase. To date, the protective role of OTC on cisplatin-induced renal injury has not been investigated. The purpose of the present study was to examine the protective effect of OTC on cisplatin-induced renal injury and to examine the mechanism of its protection.
Methods: Mice were treated with cisplatin with or without administration of OTC. The generation of reactive oxygen species (ROS), expression of intercellular adhesion molecule (ICAM)-1 and monocyte chemoattractant protein (MCP)-1 were determined in the kidney using 2',7'-dichlorofluorescein diacetate, immunostaining or western blot analysis. Nuclear factor (NF)-kappaB activity, infiltration of F4/80-positive cells and apoptosis were also investigated in addition to renal function and histology using electrophoretic mobility shift assay, immunostaining, western blot analysis, uridine triphosphate (dUTP) nick-end labelling or periodic acid-Schiff staining. The effect of OTC on superoxide dismutase activity and GSH level in cisplatin-treated normal adult human kidney (HK-2) cells were measured using assay kits.
Results: The administration of OTC resulted in a significant reduction of cisplatin-induced ROS production, the p65 subunit of NF-kappaB translocation into nucleus, expression of ICAM-1, caspase 3 activity, expression of MCP-1 and the infiltration of macrophages into renal tissue. OTC markedly ameliorated renal damage induced by cisplatin through antioxidant and anti-inflammatory effect.
Conclusions: These results suggest that OTC can be a potential therapeutic agent in cisplatin-induced renal injury through decreasing the ROS levels and activation of NF-kappaB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ndt/gfl209 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!