Exonic deletions as a cause of erythropoietic protoporphyria.

Ann Clin Biochem

Department of Medical Biochemistry and Immunology, University Hospital of Wales and Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XW, UK.

Published: May 2006

Erythropoietic protoporphyria (EPP) is an inherited disorder that results from partial deficiency of ferrochelatase (FECH), the terminal enzyme of haem biosynthesis. Current methods that examine the exons and their flanking regions of the FECH gene fail to identify mutations in about one in seven of families with EPP. The presence in some families of intragenic deletions that are not identifiable by current methods for sequencing the FECH gene may partly explain the low sensitivity of mutation detection in EPP. Here we describe the identification by gene dosage analysis of a deletion of exons 3 and 4 in a family with EPP in whom a mutation had not been found by sequencing-based methods.

Download full-text PDF

Source
http://dx.doi.org/10.1258/000456306776865160DOI Listing

Publication Analysis

Top Keywords

erythropoietic protoporphyria
8
current methods
8
fech gene
8
exonic deletions
4
deletions erythropoietic
4
protoporphyria erythropoietic
4
epp
4
protoporphyria epp
4
epp inherited
4
inherited disorder
4

Similar Publications

Article Synopsis
  • Erythropoietic protoporphyria (EPP) and X-linked protoporphyria (XLP) are rare genetic disorders that lack comprehensive management data, prompting a study of their characteristics and treatment in real-world U.S. settings.
  • The study reviewed medical records of 299 EPP and 91 XLP patients, revealing a mean diagnosis delay of 2.9 years and highlighting common pre-diagnostic tests and lifestyle recommendations.
  • Findings indicated a significant number of healthcare visits post-diagnosis and identified unmet needs, such as the need for quicker diagnoses, effective symptom relief, and better prevention of phototoxic reactions.
View Article and Find Full Text PDF

Activation of the melanocortin 1 receptor (MC1R) mediates melanogenesis in melanocytes, anti-inflammatory effects in inflammatory cells, and antifibrotic effects in fibroblasts. Thus, MC1R agonists are expected to be beneficial for treating skin, autoimmune, inflammatory, and fibrotic diseases. Afamelanotide, an α-melanocyte-stimulating hormone (α-MSH) analogue MC1R agonist, is used clinically for treating erythropoietic protoporphyria (EPP) as a subcutaneous implant formulation.

View Article and Find Full Text PDF

Inhibition of ABCG2 prevents phototoxicity in a mouse model of erythropoietic protoporphyria.

Nat Commun

December 2024

Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA.

Erythropoietic protoporphyria (EPP) is a genetic disease characterized by protoporphyrin IX-mediated painful phototoxicity. Currently, options for the management of EPP-associated phototoxicity are limited and no oral medication is available. Here, we investigated a novel therapy against EPP-associated phototoxicity by targeting the ATP-binding cassette subfamily G member 2 (ABCG2), the efflux transporter of protoporphyrin IX.

View Article and Find Full Text PDF

The role of ABCG2 in health and disease: Linking cancer therapy resistance and other disorders.

Life Sci

January 2025

Tanta University, Faculty of Pharmacy, Department of Biochemistry, Tanta Postal Code: 31527, Egypt. Electronic address:

All biological systems have adenosine triphosphate (ATP) binding cassette (ABC) transporters, one of the significant protein superfamilies involved in transport across membranes. ABC transporters have been implicated in the etiology of diseases like metabolic disorders, cancer, and Alzheimer's disease. ATP-binding cassette superfamily G member 2 (ABCG2), one of the ABC transporters, is necessary for the ATP-dependent efflux of several endogenous and exogenous substances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!