Object: The purpose of this study was to provide genetically modified adult human Schwann cells as tools for cell transplantation in peripheral nerve repair. The application of transfected autologous Schwann cells overexpressing regeneration-promoting proteins, for example, neurotrophic or growth factors, is a promising approach in the aforementioned context. To achieve an optimal clinical outcome, it is highly important to perform enrichment, genetic modification, and retransplantation of cells in a short time.
Methods: To enable the development of these autologous cellular prostheses, the authors tested the properties of adult human Schwann cells obtained from differently treated human peripheral nerve biopsy samples. The use of "cold jet," a fast and effective enrichment procedure, as well as selective, serum-free culture conditions, resulted in very pure adult human Schwann cell cultures. Using an optimized electroporation protocol, as many as 48.4% of adult human Schwann cells were successfully transfected.
Conclusions: The authors present a very fast protocol to establish adult human Schwann cell cultures that demonstrably express plasmid proteins after plasmid DNA insertion by electroporation. These autologous human Schwann cells transfected to enhance the endogenous production of regeneration-supporting proteins will likely constitute a major component of tissue-engineered peripheral nerve grafts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3171/jns.2006.104.5.778 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!