Immune system involvement in the regulation of ovarian function and augmentation of cancer.

Microsc Res Tech

Laboratory of Development, Differentiation and Cancer, Department of Obstetrics and Gynecology, The University of Tennessee Graduate School of Medicine, Knoxville, Tennessee 37920, USA.

Published: June 2006

Increasing evidence indicates a role for the immune system and mesenchymal-epithelial interactions in the regulation of ovarian function. Cytokines produced by mesenchymal cells can stimulate development and regression of ovarian structures. We report here that mesenchymal cells releasing surface molecules among epithelial cells--namely vascular pericytes and monocyte-derived cells (MDC)--and intraepithelial T lymphocytes are associated with oogenesis and formation of new primary follicles in both fetal and adult human ovaries. These activated mesenchymal cells interact with the ovarian surface epithelium, which appears to be a source of secondary germ cells and granulosa cells. Activated pericytes and MDC are also associated with stimulation of thecal development during selection of growing secondary follicles from the cohort of primary follicles. However, survival of the dominant follicle during mid-follicular phase selection is associated with a lack of activity of mesenchymal cells and retardation of thecal development, since immature granulosa cells lacking aromatase are unable to resist high levels of thecal androgens. Once the selected follicle matures (late follicular phase), it shows enhanced activity of thecal mesenchymal cells and advanced thecal development. Corpus luteum (CL) development is accompanied by a high activity of vascular pericytes and MDC. In mature CL and CL of pregnancy, luteal MDC and pericytes show a stable (inactive) state. Regression of the CL is associated with regression of pericytes, transformation of MDC into dendritic cells, infiltration by T lymphocytes, and binding of immunoglobulin G to the luteal cells. The immunoglobulin M (IgM) binds to young but not mature luteal cells. In the CL of pregnancy, IgM binds to luteal vessels, but not to luteal cells. Regressing CL shows IgM binding to both luteal cells and vessels. In ovarian cancers, highly activated MDC and sometimes activated pericytes (poorly differentiated carcinomas) are present. IgM binding is similar to that seen in the CL of pregnancy. These data indicate that vascular pericytes, MDC, T cells, and immunoglobulins may play an important role in the regulation of ovarian physiology and contribute to the augmentation of ovarian cancer growth.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jemt.20307DOI Listing

Publication Analysis

Top Keywords

mesenchymal cells
20
luteal cells
16
cells
15
regulation ovarian
12
vascular pericytes
12
pericytes mdc
12
thecal development
12
immune system
8
ovarian function
8
primary follicles
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!