The potential for phytoremediation of iron cyanide complex by willows.

Ecotoxicology

Department of Environmental Science, Hunan Agricultural University, Changsha 410128, Hunan, PR China.

Published: July 2006

Hybrid willows (Salix matsudana Koidz x Salix alba L.), weeping willows (Salix babylonica L.) and hankow willows (Salix matsudana Koidz) were exposed to potassium ferrocyanide to determine the potential of these plants to extract, transport and metabolize this iron cyanide complex. Young rooted cuttings were grown in hydroponic solution at 24.0 +/- 0.5 degrees C for 144 h. Ferrocyanide in solution, air, and aerial tissues of plants was analyzed spectrophotometrically. Uptake of ferrocyanide from the aqueous solution by plants was evident for all treatments and varied with plant species, ranging from 8.64 to 15.67% of initial mass. The uptake processes observed from hydroponic solution showed exponential disappearance kinetics. Very little amounts of the applied ferrocyanide were detected in all parts of plant materials, confirming passage of ferrocyanide through the plants. No ferrocyanide in air was found due to plant transpiration. Mass balance analysis showed that a large fraction of the reduction of initial mass in hydroponic solution was metabolized during transport within the plant materials. The difference in the metabolic rate of ferrocyanide between the three plant species was comparably small, indicating transport of ferrocyanide from hydroponic solution to plant materials and further transport within plant materials was a limiting step for assimilating this iron cyanide complex. In conclusion, phytoremediation of ferrocyanide by the plants tested in this study has potential field application.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10646-006-0081-5DOI Listing

Publication Analysis

Top Keywords

hydroponic solution
16
plant materials
16
iron cyanide
12
cyanide complex
12
willows salix
12
ferrocyanide
9
salix matsudana
8
matsudana koidz
8
plant species
8
initial mass
8

Similar Publications

Modulation of Zn Ion Toxicity in L. by Phycoremediation.

Plants (Basel)

January 2025

Department of Plant Physiology, Faculty of Biology, Sofia University, 8 Dragan Tsankov Bul., 1164 Sofia, Bulgaria.

Microalgae offer a promising alternative for heavy metal removal, and the search for highly efficient strains is ongoing. This study investigated the potential of two microalgae, sp. BGV (Chlorophyta) and Schwabe & Simonsen (Cyanoprokaryota), to bind zinc ions (Zn⁺) and protect higher plants.

View Article and Find Full Text PDF

Efficient management of soil nutrients is essential for optimizing crop production, ensuring sustainable agricultural practices, and addressing the challenges posed by population growth and environmental degradation. Smart agriculture, using advanced technologies, plays an important role in achieving these goals by enabling real-time monitoring and precision management of nutrients. In open-field soil cultivation, spatial variability in soil properties demands site-specific nutrient management and integration with variable-rate technology (VRT) to optimize fertilizer application, reduce nutrient losses, and enhance crop yields.

View Article and Find Full Text PDF

Megoura crassicauda promote the ability of Vicia faba L. to remediate cadmium pollution of water and soil.

Ecotoxicol Environ Saf

January 2025

College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China. Electronic address:

With the increasing severity of heavy metal pollution in soil and water, phytoremediation is becoming increasingly popular because of its low cost, high returns, and environmental friendliness. The use of leguminous plants such as the broad bean for heavy metal remediation is becoming a research hotspot because of their symbiotic relationship with rhizobia. This study investigated the cadmium (Cd) remediation ability of fava beans by M.

View Article and Find Full Text PDF

Real-World Implementation of Particle-Based Microfluidics: On-Spot Test for Iron and Copper Ions in Water.

ACS Omega

January 2025

Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, Ravila 14a, 50411Tartu, Estonia.

Water is an essential part of everyday life, and similarly, numerous industries depend on it. Regular water analysis is needed for both home use and in more specific fields, e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!