There is clear evidence that most antimalarial drugs, while acting through different mechanisms, are associated with parasite growth/development inhibition and eventual parasite death. However, the exact mode of parasite death remains unclear. In the present study, we investigated the ability of various drugs, including two antimalarial drugs (chloroquine and atovaquone), a topoisemerase II inhibitor (etoposide) and a nitric oxide donor (S-nitro-N-acetyl-D, L-penicillamine), to induce apoptosis in a laboratory strain of Plasmodium falciparum. Results obtained from flow cytometric analysis showed a significant reduction in the percent of parasitemia and parasite growth in all drug-treated parasite cultures, including those treated with etoposide and S-nitro-N-acetyl-D, L-penicillamine. For further investigation, we used various biochemical approaches including the terminal dUTP nick-end labeling assay, determination of mitochondrial membrane integrity and DNA degradation/fragmentation, to analyze the changes occurring during parasite-drug interactions and eventual death. We observed that loss of membrane potential was induced in parasite cultures treated with atovaquone, while S-nitro-N-acetyl-D, L-penicillamine induced abnormal parasite forms, "crisis forms", and minor DNA degradation. However, these features were not observed in the parasite cultures treated with chloroquine nor were other features of apoptosis-like death associated with any of the drugs used in this study. The death resulting from the various drug treatments is atypical of apotosis. More studies will be needed to define the precise mode of death exhibited by P. falciparum.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micinf.2006.01.016DOI Listing

Publication Analysis

Top Keywords

s-nitro-n-acetyl-d l-penicillamine
12
parasite cultures
12
plasmodium falciparum
8
antimalarial drugs
8
parasite
8
parasite death
8
cultures treated
8
death
6
drug-induced death
4
death asexual
4

Similar Publications

There is clear evidence that most antimalarial drugs, while acting through different mechanisms, are associated with parasite growth/development inhibition and eventual parasite death. However, the exact mode of parasite death remains unclear. In the present study, we investigated the ability of various drugs, including two antimalarial drugs (chloroquine and atovaquone), a topoisemerase II inhibitor (etoposide) and a nitric oxide donor (S-nitro-N-acetyl-D, L-penicillamine), to induce apoptosis in a laboratory strain of Plasmodium falciparum.

View Article and Find Full Text PDF

Brainstem cholinergic populations survive in neurodegenerative disease, while basal forebrain cholinergic neurons degenerate. We have postulated that variable resistance to oxidative stress may in part explain this. Rat primary cultures were used to study the effects of several nitrosative/oxidative stressors on brainstem (upper pons, containing pedunculopontine and lateraldorsal tegmental nuclei; BS) cholinergic neurons, comparing them with medial septal (MS), and striatal cholinergic neurons.

View Article and Find Full Text PDF

Many neuronal nitric oxide synthase (nNOS)-expressing brain neurons, including some cholinergic populations, are resistant to disease or to certain forms of excitotoxicity. Vulnerability to NO excess of forebrain (medial septal/diagonal band; MS-ACh) and brainstem (pedunculopontine/laterodorsal tegmental nuclei; BS-ACh) cholinergic neurons was compared in E16-E18 primary rat brain cultures. MS-ACh cells were approximately 300-fold more sensitive to the NO donor S-nitro-N-acetyl-D,L-penicillamine (SNAP) than were BS-ACh cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!