Nano-crystalline Zn-containing hydroxyapatite (ZnHAp) was prepared by the wet-chemical method and the selective adsorption of essential proteins was examined, taking bovine serum albumin (BSA) and pathogenic protein such as beta(2)-microglobulin (beta(2)-MG) as model proteins. Transmission electron microscopy observation and X-ray diffraction analysis indicated that the increase of Zn content led to smaller crystallites and their specific surface area of ZnHAps increased with increasing Zn content, accordingly. Furthermore, the amounts of BSA adsorption on ZnHAp particles decreased with increasing Zn content in spite of the increase in the specific surface area. It is thus concluded that nano-crystalline ZnHAps had a highly selective adsorption property with regard to beta(2)-MG.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2005.09.002 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
Copper-tantalum (Cu-Ta) immiscible alloy nanoparticles (NPs) have been the subject of extensive research in the field of structural materials, due to their exceptional nanostructural stability and high-temperature creep properties. However, Cu is also a highly active oxidation catalyst due to its abundant valence changes. In this study, we have for the first time obtained homogeneous CuTa ( = 0.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China.
Microalgae-based wastewater treatment could realize simultaneous nutrients recovery and CO sequestration. However, impacts of environmental microplastics (MPs) and antibiotic co-exposure on microalgal growth, nutrients removal, intracellular nitric oxide (NO) accumulation and subsequent nitrous oxide (NO) emission are unclarified, which could greatly offset the CO sequestration benefit. To reveal the potential impacts of environmental concentrations of MPs and antibiotic co-exposure on microalgal greenhouse gas mitigation, this study investigated the effects of representative MPs (PE, PVC, PA), antibiotic sulfamethoxazole (SMX), and nitrite (NO-N) in various combinations on attached Chlorella sorokiniana growth, nutrients removal, anti-oxidative responses, and NO emission originated from intracellular NO build-up.
View Article and Find Full Text PDFNano Lett
January 2025
Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China.
Efficient oxygen evolution reaction (OER) catalysts with fast kinetics, high efficiency, and stability are essential for scalable green production of hydrogen. The rational design and fabrication of catalysts play a decisive role in their catalytic behavior. This work presents a high-entropy catalyst, FeCoNiCuMo-O, synthesized via carbothermal shock.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Physics, Veer Narmad South Gujarat University, Surat, Gujarat, 395007, India.
The application of 2D materials for detecting dissolved gas molecules is essential for identifying faults in oil-immersed transformers. This study investigates the adsorption properties of ZrCl monolayer (ML) and Pd-doped ZrCl ML with six gas molecules (CO, CO, CH, CH, CH, CH) in transformer oil using the density functional approach. The adsorption behaviour was analysed by calculating and comparing the structures, charge transfer and adsorption energies.
View Article and Find Full Text PDFRSC Adv
January 2025
Laboratory of Clean Low-Carbon Energy, Department of Thermal Science and Energy Engineering, University of Science and Technology of China Hefei 230023 PR China.
Crafting highly dispersed active metal sites on catalysts is an optimal method for improving the catalytic reactivity and stability, as it would improve atomic utilization efficiency, enhance reactant adsorption and activation ability through unique geometric and electronic properties. In this study, two synthesis methods were employed (ammonia evaporation (AE) and the impregnation method (IM)) to load Rh species onto the ZSM-5 support in order to attain tunable dispersivity, during which a 1.25-fold increase in the total yield of liquid oxygenated products (32 433.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!