The determination of creatinine levels in biological fluids is an increasingly important clinical requirement. Amperometric biosensors have been developed based on a three-enzyme system which converts creatinine to amperometrically measurable hydrogen peroxide. The development of the amperometric creatinine biosensor has been slow due the complexity of the three-enzyme system. This paper, the first of three, discusses the chemical modification of sarcosine oxidase and the immobilization and stabilization of this enzyme using polyurethane prepolymers. Sarcosine oxidase was completely inactivated after modification using poly(ethylene glycol) activated with isocyanate. The addition of a competitive inhibitor during enzyme modification was effective in protecting the enzyme from inactivation. Computational analysis of the structure of sarcosine oxidase suggests that there is a lysine in the active site that may be hyper-reactive. The enzyme was irreversibly immobilized using polyurethane prepolymers and retained significant activity. The enzyme's half-life at 37 degrees C increased from seven days to more than 50 days after immobilization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2004.11.006DOI Listing

Publication Analysis

Top Keywords

sarcosine oxidase
16
creatinine biosensor
8
three-enzyme system
8
polyurethane prepolymers
8
stable three-enzyme
4
creatinine
4
three-enzyme creatinine
4
biosensor impact
4
impact structure
4
structure function
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!