Ordered conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) was electrochemically fabricated using a self-assembled medium of surfactant molecules as a template. The morphology and microstructure were extensively investigated by optical and electron microscopy, and results show that the coated films were composed of anisotropic domains having a characteristic size of 15-150 nm. The surfactant-templated ordered PEDOT films were electrochemically deposited on microfabricated neural probes with an electrode site area of 1,256 microm(2). The electrical properties were studied by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). EIS showed a lowered magnitude of 35 kOmega (from an initial approximately 800 kOmega) at the biologically relevant frequency of 1 kHz. CV results show that the film has higher charge capacity and is more electrochemically stable than either nodular PEDOT or PPy. Furthermore, we have begun to probe the biological response to such a material intended to define the tissue-material interface. Results show that minute concentrations of the non-ionic surfactant are enough to kill all nearby cells in culture. It is possible however, to create surfactant-templated ordered PEDOT such that SH-SY5Y survive on the conductive polymer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2004.09.006DOI Listing

Publication Analysis

Top Keywords

poly34-ethylenedioxythiophene pedot
8
conducting polymer
8
microfabricated neural
8
neural probes
8
surfactant-templated ordered
8
ordered pedot
8
pedot
5
ordered
4
ordered surfactant-templated
4
surfactant-templated poly34-ethylenedioxythiophene
4

Similar Publications

Dual-compartment-gate organic transistors for monitoring biogenic amines from food.

Biosens Bioelectron

December 2024

Department of Life Sciences, Università Degli Studi di Modena e Reggio Emilia, Via Campi 103, Modena, 41125, Italy; Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia (CTNSC), Via Fossato di Mortara 17-19, Ferrara, 44121, Italy.

According to the Food and Agriculture Organization of the United Nations (FAO) more than 14% of the world's food production is lost every year before reaching retail, and another 17% is lost during the retail stage. The use of the expiration date as the main estimator of the life-end of food products creates unjustified food waste. Sensors capable of quantifying the effective food freshness and quality could substantially reduce food waste and enable more effective management of the food chain.

View Article and Find Full Text PDF

Laser-Induced Graphene Electrodes for Flexible pH Sensors.

Nanomaterials (Basel)

December 2024

Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy.

In the growing field of personalized medicine, non-invasive wearable devices and sensors are valuable diagnostic tools for the real-time monitoring of physiological and biokinetic signals. Among all the possible multiple (bio)-entities, pH is important in defining health-related biological information, since its variations or alterations can be considered the cause or the effect of disease and disfunction within a biological system. In this work, an innovative (bio)-electrochemical flexible pH sensor was proposed by realizing three electrodes (working, reference, and counter) directly on a polyimide (Kapton) sheet through the implementation of CO laser writing, which locally converts the polymeric sheet into a laser-induced graphene material (LIG electrodes), preserving inherent mechanical flexibility of Kapton.

View Article and Find Full Text PDF

PEDOT: PSS-Modified Organic Flexible and Implantable Microelectrode for Internal Bi-Directional Electrophysiology of Three-Dimensional Cardiomyocyte Spheroid.

ACS Sens

December 2024

Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.

Three-dimensional (3D) cardiomyocyte spheroids are essential models to replicate cardiac structural and functional features in vitro. However, conventional planar and rigid microelectrode arrays (MEAs) suffer from low-quality electrophysiological recording of 3D cultures, due to limited contact areas and weak coupling between cells and MEA chips. Herein, we developed a PEDOT: PSS-modified organic flexible and implantable MEA (OFI-MEA) coupled with a self-developed integrated biosensing platform to achieve high-throughput, long-term, and stable bidirectional internal electrophysiology in 3D cardiomyocyte spheroids.

View Article and Find Full Text PDF

Conventional two-dimensional (2D) cardiomyocyte differentiation protocols create cells with limited maturity, which impairs their predictive capacity and has driven interest in three-dimensional (3D) engineered cardiac tissue models of varying maturity and scalability. Cardiac spheroids are attractive high-throughput models that have demonstrated improved functional and transcriptional maturity over conventional 2D differentiations. However, these 3D models still tend to have limited contractile and electrical maturity compared to highly engineered cardiac tissues; hence, we incorporated a library of conductive polymer microfibers in cardiac spheroids to determine if fiber properties could accelerate maturation.

View Article and Find Full Text PDF

With no effective treatments for functional recovery after injury, spinal cord injury (SCI) remains one of the unresolved healthcare challenges. Human induced pluripotent stem cell (hiPSC) transplantation is a versatile patient-specific regenerative approach for functional recovery after SCI. Injectable electroconductive hydrogel (ECH) can further enhance the cell transplantation efficacy through a minimally invasive manner as well as recapitulate the native bioelectrical microenvironment of neural tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!