The surface-deformation characteristics of uniaxially drawn poly(ethylene terephthalate) (PET) film were successfully evaluated with multiline scratch tests using scanning probe microscopy (SPM) on a nanometer scale. The PET film was prepared by compression molding from the melt, followed by quenching in ice water. The obtained amorphous film was drawn uniaxially below its glass-transition temperature, and the resultant surface roughness could be reduced to within 5 nm. A multiline scratch with the Si(3)N(4) tip of an SPM on the oriented PET surface was made parallel and perpendicular to the drawing axis under applied loads of 5-30 nN. The perpendicular scratching generated a characteristic periodic pattern on the film surface, but the parallel scratching induced a tearing of the surface. These results suggest that surface-deformation mechanisms were dominated by molecular anisotropy. The surface-deformation properties, as evaluated from scratch-angle dependences on morphological changes on a nanometer scale, were similar to the mechanical properties of the bulk.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la0601612DOI Listing

Publication Analysis

Top Keywords

surface-deformation characteristics
8
characteristics uniaxially
8
polyethylene terephthalate
8
film evaluated
8
tests scanning
8
scanning probe
8
probe microscopy
8
pet film
8
multiline scratch
8
nanometer scale
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!