Restructuring and break-up of two-dimensional aggregates in shear flow.

Langmuir

Physics of Complex Fluids, Department of Science and Technology, Institute of Mechanics, Processes and Control-Twente, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.

Published: May 2006

We consider single two-dimensional aggregates, containing glass particles, placed at a water/air interface. We have investigated the critical shear rate for break-up of aggregates with different sizes in a simple shear flow. All aggregates break-up nearly at the same shear rate (1.8 +/- 0.2 s(-)(1)) independent of their size. The evolution of the aggregate structure before break-up was also investigated. With increasing shear rate, the aggregates adopt a more circular shape, and the particles order in a more dense, hexagonal structure. A simple theoretical model was developed to explain the experimentally observed break-up. In the model, the aggregate is considered as a solid circular disk that will break near its diameter. The capillary and drag force on the two parts of the aggregate were calculated, and from this force balance, the critical shear rate was found. The model shows a weak size dependence of the critical shear rate for the considered aggregates. This is consistent with the experimental observations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la053460kDOI Listing

Publication Analysis

Top Keywords

shear rate
20
critical shear
12
two-dimensional aggregates
8
shear flow
8
shear
7
aggregates
6
rate
5
restructuring break-up
4
break-up two-dimensional
4
aggregates shear
4

Similar Publications

Formulation development and scale-up of dutasteride liquisolid tablets.

Drug Dev Ind Pharm

January 2025

Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Krakow, Poland.

Introduction: Liquisolid (LS) technology is particularly advantageous for poorly water-soluble drugs administered in very low doses because of the improved dissolution rate and superior content uniformity. However, there is a lack of research papers describing the application of this concept on an industrial scale. Thus, we present trials conducted to develop tablets containing 0.

View Article and Find Full Text PDF

This study aimed to develop gastroretentive tablets based on mucoadhesive-floating systems with encapsulated gentian (, Gentianaceae) root extract to overcome the low bioavailability and short elimination half-life of gentiopicroside, a dominant bioactive compound with systemic effect. The formulation also aimed to promote the local action of the extract in the stomach. Tablets were obtained by direct compression of sodium bicarbonate (7.

View Article and Find Full Text PDF

Plant Adaptation and Soil Shear Strength: Unraveling the Drought Legacy in .

Plants (Basel)

January 2025

Key Laboratory of Mountain Hazards and Earth Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China.

Climate change has led to an increasing frequency of droughts, potentially undermining soil stability. In such a changing environment, the shallow reinforcement effect of plant roots often fails to meet expectations. This study aims to explore whether this is associated with the alteration of plant traits as a response to environmental change.

View Article and Find Full Text PDF

Direct Ink Writing 3D Printing Polytetrafluoroethylene/Polydimethylsiloxane Membrane with Anisotropic Surface Wettability and Its Application in Oil-Water Separation.

Polymers (Basel)

January 2025

State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Biological surfaces with physical discontinuity or chemical heterogeneity possess special wettability in the form of anisotropic wetting behavior. However, there are several challenges in designing and manufacturing samples with anisotropic wettability. This study investigates the fabrication of PTFE/PDMS grid membranes using Direct Ink Writing (DIW) 3D printing for oil-water separation applications.

View Article and Find Full Text PDF

Joint Analysis of Cardiovascular Control and Shear Wave Elastography to Determine Carotid Plaque Vulnerability.

J Clin Med

January 2025

Operative Unit of Vascular Surgery, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy.

: Carotid artery stenosis (CAS) is one of the main causes of stroke, and the vulnerability of plaque has been proved to be a determinant. A joint analysis of shear wave elastography, a radiofrequency echo-based wall tracking technique for arterial stiffness evaluation, and of autonomic and baroreflex function is proposed to noninvasively, preoperatively assess plaque vulnerability in asymptomatic CAS patients scheduled for carotid endarterectomy. : Elastographic markers of arterial stiffness were derived preoperatively in 78 CAS patients (age: 74.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!