Although non steroidal antiinflammatory drugs (NSAIDs) have been shown to be effective as chemopreventive agents, important side-effects limit their clinical use. A promising novel class of drugs, nitric oxide-donating NSAIDs (NO-NSAIDs), has been found to be more active than classical NSAIDs. This study explored the effect of the NO-donating aspirin derivative, NCX 4040, on three human pancreatic adenocarcinoma cell lines (Capan-2, MIA PaCa-2 and T3M4). NCX 4040 activity was compared with that of NCX 4016 (an NO(2)-positional isomer of NCX 4040), SNAP (a standard NO-releasing molecule), NCX 4042 (denitrated analog of NCX 4040), and aspirin. NCX 4040 showed a striking cytocidal activity in all cell lines, already inducing significant percentages of apoptotic cells at 10 muM in Capan-2 cell lines. This study focused on the biological mechanisms of sensitivity and resistance to NCX 4040, highlighting that the cytotoxic action of this drug may be due to the hyperexpression of Bax, its translocation to the mitochondria, the release of Cytochrome C, and the activation of caspases-9 and -3, overall in a p53-independent manner. Moreover, the use of a specific COX-2 inhibitor (NS 398) in the experimental models showed that COX-2 hyperexpression could partially explain the resistance mechanisms to NCX 4040.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10495-006-6986-x | DOI Listing |
Cells
June 2023
Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA.
Our recent studies show that the treatment of human ovarian tumor cells with NCX4040 results in significant depletions of cellular glutathione, the formation of reactive oxygen/nitrogen species and cell death. NCX4040 is also cytotoxic to several human colorectal cancer (CRC) cells in vitro and in vivo. Here, we examined the ferroptosis-dependent mechanism(s) of cytotoxicity of NCX4040 in HT-29 and K-RAS mutant HCT 116 colon cell lines.
View Article and Find Full Text PDFInt J Mol Sci
August 2022
Laboratory of Signal Transduction, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
NCX4040, the non-steroidal anti-inflammatory-NO donor, is cytotoxic to several human tumors, including ovarian tumor cells. We have found that NCX4040 is also cytotoxic against both OVCAR-8 and its adriamycin resistant (NCI/ADR-RES) tumor cell lines. Here, we have examined mechanism(s) for the cytotoxicity of NCX4040 in OVCAR-8 and NCI/ADR-RES cell lines.
View Article and Find Full Text PDFCancers (Basel)
April 2021
Laboratory of Toxicology and Toxicokinetic, National Cancer Institute at National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
The emergence of multidrug resistance (MDR) in the clinic is a significant problem for a successful treatment of human cancers. Overexpression of various ABC transporters (P-gp, BCRP and MRP's), which remove anticancer drugs in an ATP-dependent manner, is linked to the emergence of MDR. Attempts to modulate MDR have not been very successful in the clinic.
View Article and Find Full Text PDFFree Radic Biol Med
November 2019
Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL, USA. Electronic address:
Non-steroidal anti-inflammatory drugs (NSAID) have shown promise as anticancer agents by inducing cell death apart from their antipyretic, anti-inflammatory and anti-thrombogenic effects. In our current study, we investigated the oxidative stress mediated cell death mechanism of a NSAID derivative NCX4040 (a nitric oxide (NO) releasing form of aspirin) in castration-resistant prostate cancer (CRPC) PC3 cell line. Our data revealed that NCX4040 is more potent than its parent compound aspirin or NO releasing compound DETA NONOate.
View Article and Find Full Text PDFMolecules
May 2019
Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile.
Nitric oxide-releasing aspirins (NO-aspirins) are aspirin derivatives that are safer than the parent drug in the gastrointestinal context and have shown superior cytotoxic effects in several cancer models. Despite the rationale for their design, the influence of nitric oxide (NO) on the effects of NO-aspirins has been queried. Moreover, different isomers exhibit varying antitumor activity, apparently related to their ability to release NO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!