The search for antiepileptic drugs that are capable of blocking the progression of epilepsy (epileptogenesis) is an important problem of translational epilepsy research. The neuropeptide galanin effectively suppresses acute seizures. We examined the ability of hippocampal galanin receptor type 1 (GalR1) and type 2 (GalR2) to inhibit kindling epileptogenesis and studied signaling cascades that mediate their effects. Wistar rats received 24-h-long intrahippocampal infusion of a GalR1/2 agonist galanin(1-29), GalR1 agonist M617 [galanin(1-13)-Gln14-bradykinin(2-9)-amide], or GalR2 agonist galanin(2-11). The peptides were administered alone or combined with an inhibitor of Gi protein pertussis toxin (PTX), Gi-protein activated K+ channels (GIRK) inhibitor tertiapin Q (TPQ), G(q/11) protein inhibitor [D-Arg1,D-Trp(5,7,9),Leu11]-substance P (dSP), or an inhibitor of intracellular Ca2+ release dantrolene. Sixteen hours into drug delivery, the animals were subjected to rapid kindling-60 electrical trains administered to ventral hippocampus every 5 min. M617 delayed epileptogenesis, whereas galanin(1-29) and galanin(2-11) completely prevented the occurrence of full kindled seizures. TPQ abolished anticonvulsant effect of M617 but not of galanin(2-11). PTX blocked anticonvulsant effects of M617 and inversed the action of galanin(1-29) and galanin(2-11) to proconvulsant. dSP and dantrolene did not modify seizure suppression through GalR1 and GalR2, but eliminated the proconvulsant effect of PTX + galanin(1-29) and PTX + galanin(2-11) combinations. We conclude that hippocampal GalR1 exert their disease-modifying effect through the Gi-GIRK pathway. GalR2 is antiepileptogenic through the Gi mechanism independent of GIRK. A secondary proconvulsant pathway coupled to GalR2 involves G(q/11) and intracellular Ca2+. The data are important for understanding endogenous mechanisms regulating epileptogenesis and for the development of novel antiepileptogenic drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.106.104703DOI Listing

Publication Analysis

Top Keywords

kindling epileptogenesis
8
hippocampal galanin
8
intracellular ca2+
8
galanin1-29 galanin2-11
8
epileptogenesis
5
galr2
5
galanin2-11
5
regulation kindling
4
epileptogenesis hippocampal
4
type
4

Similar Publications

Seizures in people with Alzheimer's disease are increasingly recognized to worsen disease burden and accelerate functional decline. Harnessing established antiseizure medicine discovery strategies in rodents with Alzheimer's disease associated risk genes represents a novel way to uncover disease modifying treatments that may benefit these Alzheimer's disease patients. This commentary discusses the recent evaluation by Dejakaisaya and colleagues to assess the antiseizure and disease-modifying potential of the repurposed cephalosporin antibiotic, ceftriaxone, in the Tg2576 mouse model.

View Article and Find Full Text PDF

Empagliflozin Mitigates PTZ-Induced Seizures in Rats: Modulating Npas4 and CREB-BDNF Signaling Pathway.

J Neuroimmune Pharmacol

January 2025

Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.

Empagliflozin (EMPA) is one of the sodium/glucose cotransporter 2 (SGLT2) inhibitors that has been recently approved for the treatment of diabetes mellitus type II. Recently, EMPA has shown protective effects in different neurological disorders, besides its antidiabetic activity. Kindling is a relevant model to study epilepsy and neuroplasticity.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the effect of 40-Hz audiovisual stimulation on seizure susceptibility and amyloid-beta plaque levels in 5xFAD mice, a model for Alzheimer's disease.
  • Results showed that this sensory stimulation decreased seizure severity and delayed epileptogenesis, with 5xFAD mice experiencing about a 50% reduction in amyloid pathology compared to those without stimulation.
  • The findings suggest that 40-Hz stimulation may benefit both the reduction of Aβ pathology and possibly influence glial cells, impacting seizure activity, even in mice without amyloid plaques.
View Article and Find Full Text PDF

Epilepsy affects at least 1% of the global population of all socioeconomic backgrounds. Data obtained from previous studies suggest the role of mTOR signaling in epileptogenesis. The present study aimed to investigate the hypothesis that mTOR inhibitor sulfamethizole might produce antiepileptic effects in pentylenetetrazole (PTZ)-induced kindling seizures in mice.

View Article and Find Full Text PDF

The secretions of Telodeinopus canaliculatus, a giant millipede, are used in traditional medicine to treat epileptic seizures. Therefore, this work aimed to assess the antiepileptogenic- and anxiolytic-like effects of an extract of T. canaliculatu in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!