Schizophrenia and related disorders have a major genetic component, but despite much effort and many claims, few genes have been consistently replicated and fewer have biological support. One recent exception is "Disrupted in Schizophrenia 1" (DISC1), which was identified at the breakpoint on chromosome 1 of the balanced translocation (1;11)(q42.1;q14.3) that co-segregated in a large Scottish family with a wide spectrum of major mental illnesses. Since then, genetic analysis has implicated DISC1 in schizophrenia, schizoaffective disorder, bipolar affective disorder, and major depression. Importantly, evidence is emerging from genetic studies for a causal relationship between DISC1 and directly measurable trait variables such as working memory, cognitive aging, and decreased gray matter volume in the prefrontal cortex, abnormalities in hippocampal structure and function, and reduction in the amplitude of the P300 event-related potential. Further, DISC1 binds a number of proteins known to be involved in essential processes of neuronal function, including neuronal migration, neurite outgrowth, cytoskeletal modulation, and signal transduction. Thus, both genetic and functional data provide evidence for a critical role for DISC1 in schizophrenia and related disorders, supporting the neurodevelopmental hypothesis for the molecular pathogenesis of these devastating illnesses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2632250 | PMC |
http://dx.doi.org/10.1093/schbul/sbj079 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!