Karyogamy, or nuclear fusion, is essential for sexual reproduction. In angiosperms, karyogamy occurs three times: twice during double fertilization of the egg cell and the central cell and once during female gametophyte development when the two polar nuclei fuse to form the diploid central cell nucleus. The molecular mechanisms controlling karyogamy are poorly understood. We have identified nine female gametophyte mutants in Arabidopsis (Arabidopsis thaliana), nuclear fusion defective1 (nfd1) to nfd9, that are defective in fusion of the polar nuclei. In the nfd1 to nfd6 mutants, failure of fusion of the polar nuclei is the only defect detected during megagametogenesis. nfd1 is also affected in karyogamy during double fertilization. Using transmission electron microscopy, we showed that nfd1 nuclei fail to undergo fusion of the outer nuclear membranes. nfd1 contains a T-DNA insertion in RPL21M that is predicted to encode the mitochondrial 50S ribosomal subunit L21, and a wild-type copy of this gene rescues the mutant phenotype. Consistent with the predicted function of this gene, an NFD1-green fluorescent protein fusion protein localizes to mitochondria and the NFD1/RPL21M gene is expressed throughout the plant. The nfd3, nfd4, nfd5, and nfd6 mutants also contain T-DNA insertions in genes predicted to encode proteins that localize to mitochondria, suggesting a role for this organelle in nuclear fusion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1489897PMC
http://dx.doi.org/10.1104/pp.106.079319DOI Listing

Publication Analysis

Top Keywords

nuclear fusion
16
female gametophyte
12
polar nuclei
12
fusion defective1
8
gametophyte development
8
double fertilization
8
central cell
8
fusion polar
8
nfd6 mutants
8
predicted encode
8

Similar Publications

An explainable transformer model integrating PET and tabular data for histologic grading and prognosis of follicular lymphoma: a multi-institutional digital biopsy study.

Eur J Nucl Med Mol Imaging

January 2025

Department of Nuclear Medicine, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu City, Sichuan Province, 610041, China.

Background: Pathological grade is a critical determinant of clinical outcomes and decision-making of follicular lymphoma (FL). This study aimed to develop a deep learning model as a digital biopsy for the non-invasive identification of FL grade.

Methods: This study retrospectively included 513 FL patients from five independent hospital centers, randomly divided into training, internal validation, and external validation cohorts.

View Article and Find Full Text PDF

Objectives: To develop and validate radiomics and deep learning models based on contrast-enhanced MRI (CE-MRI) for differentiating dual-phenotype hepatocellular carcinoma (DPHCC) from HCC and intrahepatic cholangiocarcinoma (ICC).

Methods: Our study consisted of 381 patients from four centers with 138 HCCs, 122 DPHCCs, and 121 ICCs (244 for training and 62 for internal tests, centers 1 and 2; 75 for external tests, centers 3 and 4). Radiomics, deep transfer learning (DTL), and fusion models based on CE-MRI were established for differential diagnosis, respectively, and their diagnostic performances were compared using the confusion matrix and area under the receiver operating characteristic (ROC) curve (AUC).

View Article and Find Full Text PDF

Circadian rhythms driven by biological clocks regulate physiological processes in all living organisms by anticipating daily geophysical changes, thus enhancing environmental adaptation. Time-resolved serial multi-omic analyses in vivo, ex vivo, and in synchronized cell cultures have revealed rhythmic changes in the transcriptome, proteome, and metabolome, involving up to 50 % of the mammalian genome. Mitochondrial oxidative metabolism is central to cellular bioenergetics, and many nuclear genes encoding mitochondrial proteins exhibit both circadian and ultradian oscillatory expression.

View Article and Find Full Text PDF

Approximately 10-20% of thyroid cancers are driven by gene fusions, which activate oncogenic signaling through aberrant overexpression, ligand-independent dimerization, or loss of inhibitory motifs. We identified 13 thyroid tumors with thyroglobulin (TG) gene fusions and aimed to assess their histopathology and the fusions' oncogenic and tumorigenic properties. Of 11 cases with surgical pathology, 82% were carcinomas and 18% noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP).

View Article and Find Full Text PDF

Virtual biopsy for non-invasive identification of follicular lymphoma histologic transformation using radiomics-based imaging biomarker from PET/CT.

BMC Med

January 2025

Department of Nuclear Medicine, West China Hospital, Sichuan University, Guoxue Alley, Address: No.37, Chengdu City, Sichuan, 610041, China.

Background: This study aimed to construct a radiomics-based imaging biomarker for the non-invasive identification of transformed follicular lymphoma (t-FL) using PET/CT images.

Methods: A total of 784 follicular lymphoma (FL), diffuse large B-cell lymphoma, and t-FL patients from 5 independent medical centers were included. The unsupervised EMFusion method was applied to fuse PET and CT images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!