We present a toxicological assessment of five carbon nanomaterials on human fibroblast cells in vitro. We correlate the physico-chemical characteristics of these nanomaterials to their toxic effect per se, i.e. excluding catalytic transition metals. Cell survival and attachment assays were evaluated with different concentrations of refined: (i) single-wall carbon nanotubes (SWCNTs), (ii) active carbon, (iii) carbon black, (iv) multi-wall carbon nanotubes, and (v) carbon graphite. The refined nanomaterial that introduced the strongest toxic effect was subsequently compared to its unrefined version. We therefore covered a wide range of variables, such as: physical dimensions, surface areas, dosages, aspect ratios and surface chemistry. Our results are twofold. Firstly, we found that surface area is the variable that best predicts the potential toxicity of these refined carbon nanomaterials, in which SWCNTs induced the strongest cellular apoptosis/necrosis. Secondly, we found that refined SWCNTs are more toxic than its unrefined counterpart. For comparable small surface areas, dispersed carbon nanomaterials due to a change in surface chemistry, are seen to pose morphological changes and cell detachment, and thereupon apoptosis/necrosis. Finally, we propose a mechanism of action that elucidates the higher toxicity of dispersed, hydrophobic nanomaterials of small surface area.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2006.03.008DOI Listing

Publication Analysis

Top Keywords

carbon nanotubes
12
carbon nanomaterials
12
carbon
9
single-wall carbon
8
surface areas
8
surface chemistry
8
surface area
8
small surface
8
surface
6
nanomaterials
5

Similar Publications

TiSquantum dots composite carbon nanotubes aerogel with electromagnetic interference shielding effect.

Nanotechnology

January 2025

Institute of Nonlinear Optics, College of Science, JiuJiang University, Jiangxi 334000, People's Republic of China.

Titanium disulfide quantum dots (TiSQDs) has garnered significant research interest due to its distinctive electronic and optical properties. However, the effectiveness of TiSQDs in electromagnetic interference (EMI) shielding is influenced by various factors, including their size, morphology, monodispersity, tunable bandgap, Stokes shift and interfacial effects. In this study, we propose a systematic approach for the synthesis of TiSQDs with small size (3.

View Article and Find Full Text PDF

In this study, we investigate the thermoelectric properties of functionalized multi-walled carbon nanotubes (F-MWCNTs) dispersed over a flexible substrate through a facile vacuum filtration route. To improve their interfacial adhesion and dispersion, F-MWCNTs underwent hot-pressing. The heat-treatment has improved the nanotubes' connections and subsequently reduced porosity as well, which results in an increasing electrical conductivity upon increasing temperature of hot-pressing.

View Article and Find Full Text PDF

Accurate DNA Sequence Prediction for Sorting Target-Chirality Carbon Nanotubes and Manipulating Their Functionalities.

ACS Nano

January 2025

South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.

Synthetic single-wall carbon nanotubes (SWCNTs) contain various chiralities, which can be sorted by DNA. However, finding DNA sequences for this purpose mainly relies on trial-and-error methods. Predicting the right DNA sequences to sort SWCNTs remains a substantial challenge.

View Article and Find Full Text PDF

Bismuth-based photocatalysts proved to have remarkable photoactivity for antibiotic degradation from water. However, the two significant challenges of bismuth-based photocatalysts are the fast charge recombination rate and higher energy band gap. This study successfully synthesized a novel I-Bi/BiWO/MWCNTs (C-WBI) heterostructure composite photocatalysts with shorter energy band-gap and higher charge production capability through interfacial amidation linkage.

View Article and Find Full Text PDF

Aqueous two-phase extraction (ATPE) is an effective and scalable liquid-phase processing method for purifying single species of single-wall carbon nanotubes (SWCNTs) from multiple species mixtures. Recent metrological developments have led to advances in the speed of identifying solution parameters leading to more efficient ATPE separations with greater fidelities. In this feature article, we review these developments and discuss their vast potential to further advance SWCNT separations science towards the optimization of production scale processes and the full realization of SWCNT-enabled technologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!