In this study, a tpi1 gene encoding for the enzyme triose phosphate isomerase in Klebsiella pneumoniae DSM2026 was knocked out in an effort to metabolically engineer this strain as a model system for the production of 1,3-propanediol. Investigations of the tpi1 knockout mutant led to the discovery of a second tpi gene (tpi2) in this organism. The new tpi2 gene was cloned and sequenced. The coding region of the tpi2 gene contains 795bp (base pairs) and the deduced protein consists of 265 amino acids. Sequence comparison of TPI2 proteins in different organisms revealed the presence of a highly conserved signature A-Y-E-P-V-W-A-I-G-[EDVS]-[GKNASH], which is nearly the same as the reported TPI consensus signature. The tpi1 gene of K. pneumoniae DSM2026 shows a high sequence similarity to that of E. coli, whereas, the tpi2 gene resembles more its relatives in the alpha-proteobacteria, suggesting that they evolve from different ancestors. The overexpression of the tpi2 gene restores the growth deficiency of tpi1 knockout mutant on the minimal medium containing glucose or glycerol. Furthermore, the catalytic activity of this new triose phosphate isomerase was confirmed in both tpi1 knockout mutant and tpi2 over-expressing strain by enzyme assays. For the first time, the co-existence of two tpi genes in an enteric bacterium is experimentally confirmed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiotec.2006.03.034 | DOI Listing |
Plant Biotechnol J
March 2024
State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.
Heat stress causes dysfunction of the carbon-assimilation metabolism. As a member of Calvin-Benson-Bassham (CBB) cycle, the chloroplast triose phosphate isomerases (TPI) catalyse the interconversion of glyceraldehyde 3-phosphate (GAP) and dihydroxyacetone phosphate (DHAP). The tomato (Solanum lycopersicum) genome contains two individual SlTPI genes, Solyc10g054870 and Solyc01g111120, which encode the chloroplast-located proteins SlTPI1 and SlTPI2, respectively.
View Article and Find Full Text PDFParasitology
November 2012
Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Col. San Pedro Zacatenco Av. IPN 2508, México, D.F.
The glycolytic enzyme triosephosphate isomerase catalyses the isomerization between glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. Here we report that Trichomonas vaginalis contains 2 fully functional tpi genes. Both genes are located in separated chromosomal context with different promoter regulatory elements and encode ORFs of 254 amino acids; the only differences between them are the character of 4 amino acids located in α-helices 1, 2 and 8.
View Article and Find Full Text PDFPlant Physiol Biochem
March 2009
Dpto de Fisiología Vegetal, E.P.S., Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain.
Two Kunitz trypsin inhibitors TPI-1 and TPI-2, encoded by CaTPI-1 and CaTPI-2, previously identified and characterized, have been detected in chickpea (Cicer arietinum L.) embryonic axes from seeds imbibed up to 48 h. Their gene transcription commenced before germination sensu stricto was completed.
View Article and Find Full Text PDFPhysiol Plant
March 2008
Departamento de Fisiología Vegetal, Centro Hispano-Luso de Investigaciones Agrarias, Universidad de Salamanca, Plaza Doctores de la Reina s/n, Salamanca 37007, Spain.
Here, we report the identification and characterization of CaTPI-2, which is a member of a Cicer arietinum gene family encoding Kunitz-type proteinase inhibitors with at least two members -CaTPI-1 and CaTPI-2. The widespread mRNA accumulation of CaTPI-2 in all the different organs of 4-day-old etiolated seedlings and in stem internodes differs from the more specific Cicer arietinum Trypsin Proteinase Inhibitor-1 (CaTPI-1) transcription. After the generation of polyclonal antibodies against the recombinant Trypsin Proteinase Inhibitor-2 (TPI-2) protein, the protein was located in the cell walls of vegetative organs.
View Article and Find Full Text PDFJ Biotechnol
October 2006
GBF-German Research Center for Biotechnology, Research Group Systems Biology, Mascheroder Weg 1, 38124 Braunschweig, Germany.
In this study, a tpi1 gene encoding for the enzyme triose phosphate isomerase in Klebsiella pneumoniae DSM2026 was knocked out in an effort to metabolically engineer this strain as a model system for the production of 1,3-propanediol. Investigations of the tpi1 knockout mutant led to the discovery of a second tpi gene (tpi2) in this organism. The new tpi2 gene was cloned and sequenced.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!