Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The inability or the capacity to promote the phosphorylation of Na+/K(+)-transporting ATPase (Na/K-ATPase) from [32P]Pi is shown to differentiate between mechanistically digitalis-unlike and digitalis-like inhibitors of this enzyme known to be the receptor for all digitalis actions. A negative or positive response in the phosphorylation promotion assay introduced here appears thus to be suitable to diagnose the chemical species in the isolates of animal origin related to the putative endogenous digitalis. Various digitalis-congeneric C/D-cis steroids, progesterone-congeneric C/D-trans steroids and the Erythrophleum alkaloid cassaine promote the enzyme phosphorylation and show a similar pattern of discrimination between three Na/K-ATPase variants. Thus, their cyclopentanoperhydrophenanthrene or perhydrophenanthrene nuclei appear to serve as the minimal pharmacophoric lead structures for bimolecular recognition and to represent chemical models for the chemical nature of endogenous digitalis. Specifically, the hormonal C/D-trans steroids could provide the basic skeleton in endogenous digitalis biosynthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/14756369109069057 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!