Hydroxyapatite (HA) bone scaffolds with controlled macrochannel pores.

J Mater Sci Mater Med

School of Materials Science and Engineering, Seoul National University, Seoul 151-742, Korea.

Published: June 2006

Hydroxyapatite (HA) macrochanneled porous scaffolds, with a controlled pore structure, were fabricated via a combination of the extrusion and lamination processes. The scaffold was architectured by aligning and laminating the extruded HA and carbon filaments. The macrochannel pores were formed by removing the carbon filaments after thermal treatments (binder removal and sintering). The porosity of the scaffolds was varied between 48 and 73% with a controlled pore size of approximately 450 microm, by adjusting the fractions of HA and carbon filaments. As the porosity was increased from 48 to 73%, the compressive strength decreased from 11.5 to 3.2 MPa. However, the osteoblast-like cell responses on the scaffold, such as the proliferation rate and alkaline phosphatase (ALP) activity, were significantly enhanced as the porosity was increased.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10856-006-8934-2DOI Listing

Publication Analysis

Top Keywords

carbon filaments
12
scaffolds controlled
8
macrochannel pores
8
controlled pore
8
porosity increased
8
hydroxyapatite bone
4
bone scaffolds
4
controlled macrochannel
4
pores hydroxyapatite
4
hydroxyapatite macrochanneled
4

Similar Publications

A novel and high-performance tumor inhibitor of La, N co-doped carbon dots for U251 and LN229 cells.

Colloids Surf B Biointerfaces

January 2025

Department of Neurosurgery, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou 341000, China. Electronic address:

To address the medical challenges posed by glioblastoma, a novel and high-performance tumor inhibitor (La@FA-CDs) composed of folic acid and lanthanum nitrate hexahydrate, was successfully synthesized and demonstrated effectiveness in inhibiting the growth of U251 and LN299 cells. The microstructure of La@FA-CDs was extensively analyzed by FTIR, UV-Vis, XPS, TEM, AFM NMR, and nanoparticle size analyzer. The optical and electrical properties of La@FA-CDs were characterized using a fluorescence spectrometer and a zeta potential analyzer.

View Article and Find Full Text PDF

Background Toothbrush manufacturers commonly use bristle materials such as nylon, polybutylene terephthalate, polypropylene, polyethylene terephthalate, boar hair, bamboo, carbon fiber, silicone, polylactic acid, or their modifications such as Curen. Nylon filaments have long been demonstrated to be durable and are widely used, but not much is known regarding the performance of Curen filaments compared to nylon filaments. This in vitro study compared the stiffness, abrasion potential, abrasion resistance, and bristle surface changes of Curen and nylon filaments.

View Article and Find Full Text PDF

Performance Restoration of Chemically Recycled Carbon Fibres Through Surface Modification with Sizing.

Polymers (Basel)

December 2024

Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou, GR-15773 Athens, Greece.

The recycling of Carbon Fibre-Reinforced Polymers (CFRPs) is becoming increasingly crucial due to the growing demand for sustainability in high-performance industries such as automotive and aerospace. This study investigates the impact of two chemical recycling techniques, chemically assisted solvolysis and plasma-enhanced solvolysis, on the morphology and properties of carbon fibres (CFs) recovered from end-of-life automotive parts. In addition, the effects of fibre sizing are explored to enhance the performance of the recycled carbon fibres (rCFs).

View Article and Find Full Text PDF

The use of 3D-printed electrodes is reported fabricated from in-house conductive filament composed of a mixture of recycled poly (lactic acid) (rPLA), graphite (Gpt), and carbon black (CB) for fast detection of the abused drug ketamine. Firstly, the performance of these electrodes was evaluated in comparison to 3D-printed electrodes produced employing a commercially available conductive filament. After a simple pretreatment step (mechanical polishing), the new 3D-printed electrodes presented better performance than the electrodes produced from commercial filament in relation to peak-to-peak separation of the redox probe [Fe(CN)]/ (130 mV and 759 mV, respectively), charge transfer resistance (R = 1.

View Article and Find Full Text PDF

Babassu (Atallea sp.), a native palm tree from South America's Amazon produces bio-oil and biochar with significant potential for industrial applications. Babassu oil as a bio-based plasticizer is reported here for the first time to replace petrochemical alternatives in the production of conductive filaments for additive manufacturing purposes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!