Scar and fibrosis are often the end result of mechanical injury and inflammatory diseases. One chemokine that is repeatedly linked to fibrotic responses is monocyte chemoattractant protein-1 (MCP-1). We utilized a murine fibrosis model that produces dermal lesions similar to scleroderma to evaluate collagen fibrillogenesis in the absence of MCP-1. Dermal fibrosis was induced by subcutaneous injection of bleomycin into the dorsal skin of MCP-1-/- and wild-type C57BL/6 mice. After 4 weeks of daily injections, bleomycin treatment led to thickened collagen bundles with robust inflammation in the lesional dermis of wild-type mice. In contrast, the lesional skin of MCP-1-/- mice exhibited a dermal architecture similar to phosphate-buffered saline (PBS)-injected control and normal skin, with few inflammatory cells. Ultrastructural analysis of the lesional dermis from bleomycin-injected wild-type mice revealed markedly abnormal arrangement of collagen fibrils, with normal large diameter collagen fibrils replaced by small collagen fibrils of 41.5 nm. In comparison, the dermis of bleomycin-injected MCP-1-/- mice displayed a uniform pattern of fibril diameters that was similar to normal skin (average diameter 76.7 nm). The findings implicate MCP-1 as a key determinant in the development of skin fibrosis induced by bleomycin, and suggest that MCP-1 may influence collagen fiber formation in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.jid.5700302 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China.
Osteoporosis (OP) is a systemic skeletal disorder characterized by decreased bone mineral density and a heightened risk of fractures. Therapies for OP have primarily focused on balancing bone formation and bone resorption, but enhancing the remineralization of osteoporotic bone is also a key strategy for effective repair. Recent insights into biomineralization mechanisms have highlighted the essential role of mineral-containing extracellular vesicles (EVs) secreted by osteoblasts in promoting bone marrow mesenchymal stromal/stem cell (BMSC) differentiation and initiating matrix mineralization.
View Article and Find Full Text PDFPeerJ
January 2025
University of Amsterdam, Amsterdam, Netherlands.
Background: Achilles tendinopathy (AT) management can be difficult, given the paucity of effective treatment options and the degenerative nature of the condition. Innovative therapies for Achilles tendinopathy are therefore direly needed. New therapeutic developments predominantly begin with preclinical animal and in vitro studies to understand the effects at the molecular level and to evaluate toxicity.
View Article and Find Full Text PDFMatrix Biol
February 2025
Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada. Electronic address:
Advanced Glycation End Products (AGEs) are the end result of the irreversible, non-enzymatic glycation of proteins by reducing sugars. These chemical modifications accumulate with age and have been associated with various age-related and diabetic complications. AGEs predominantly accumulate on proteins with slow turnover rates, of which collagen is a prime example.
View Article and Find Full Text PDFActa Biomater
January 2025
Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA. Electronic address:
Hydrogels composed of collagen, the most abundant protein in the human body, are widely used as scaffolds for tissue engineering due to their ability to support cellular activity. However, collagen hydrogels with encapsulated cells often experience bulk contraction due to cell-generated forces, and conventional strategies to mitigate this undesired deformation often compromise either the fibrillar microstructure or cytocompatibility of the collagen. To support the spreading of encapsulated cells while preserving the structural integrity of the gels, we present an interpenetrating network (IPN) of two distinct collagen networks with different crosslinking mechanisms and microstructures.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2025
The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.
The formation of fibrocartilage in microfracture (MFX) severely limits its long-term outlook. There is consensus in the scientific community that the placement of an appropriate scaffold in the MFX defect site can promote hyaline cartilage formation and improve therapeutic benefit. Accordingly, in this work, a novel natural biomaterial-the cartilage analog (CA)-which met criteria favorable for chondrogenesis, was evaluated in vitro to determine its candidacy as a potential MFX scaffold.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!