Prion diseases and Alzheimer disease (AD) share a variety of clinical and neuropathologic features (e.g. progressive dementia, accumulation of abnormally folded proteins in diseased tissue, and pronounced neuronal loss) as well as pathogenic mechanisms like generation of oxidative stress molecules and complement activation. Recently, it was suggested that neuronal death in AD may have its origin in the endoplasmic reticulum (ER). Cellular stress conditions can interfere with protein folding and subsequently cause accumulation of unfolded or misfolded proteins in the ER lumen. The ER responds to this by the activation of adaptive pathways, which are termed unfolded protein response (UPR). The UPR transducer PERK, which launches the most immediate response to ER stress (i.e. the transient attenuation of mRNA translation), and the downstream effector of PERK, eIF2alpha, were shown to be activated in AD. We demonstrate that neither in sporadic nor in infectiously acquired or inherited human prion diseases can the activated forms of PERK and eIF2alpha be detected, except when concomitant neurofibrillary pathology is present; whereas the distribution of phosphorylated PERK correlates with abnormally phosphorylated tau in AD. In brains of scrapie-affected mice and mice infected with sporadic or variant Creutzfeldt-Jakob disease, activated PERK is only very faintly expressed. The lack of prominent activation of the PERK-eIF2alpha pathway in prion diseases suggests that, in contrast to AD, ER stress does not play a crucial role in neuronal death in prion disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.jnen.0000218445.30535.6fDOI Listing

Publication Analysis

Top Keywords

prion diseases
16
endoplasmic reticulum
8
alzheimer disease
8
neuronal death
8
perk eif2alpha
8
stress
5
prion
5
perk
5
reticulum stress
4
stress features
4

Similar Publications

Excitatory neuron-prone prion propagation and excitatory neuronal loss in prion-infected mice.

Front Mol Neurosci

December 2024

Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan.

The accumulation of a disease-specific isoform of prion protein (PrP) and histopathological lesions, such as neuronal loss, are unevenly distributed in the brains of humans and animals affected with prion diseases. This distribution varies depending on the diseases and/or the combinations of prion strain and experimental animal. The brain region-dependent distribution of PrP and neuropathological lesions suggests a neuronal cell-type-dependent prion propagation and vulnerability to prion infection.

View Article and Find Full Text PDF

Identifying cellular markers within archived formalin-fixed, paraffin-embedded (FFPE) tissues is critical for understanding tissue landscapes impacting animal health, but in situ detection methods are limited in veterinary species by a restricted toolbox of species-compatible immunoreagents. We identify antibodies with conserved in situ reactivity to IBA-1 (macrophages/dendritic cells), CD3ε (T cells), Pax5 (B cells), Ki-67 (cycling cells), and cytokeratin type I/II (epithelial cells) in FFPE tissues of pigs, cattle, and white-tailed deer. Multiplexed brightfield detection (IBA-1/CD3ε/Pax5) in lymph nodes of all three species demonstrated species-specific and species-conserved features of cellular architecture.

View Article and Find Full Text PDF

QuICSeedR: An R package for analyzing fluorophore-assisted seed amplification assay data.

Bioinformatics

December 2024

Department of Electrical and Computer Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, MN United States.

Motivation: Fluorophore-assisted seed amplification assays (F-SAAs), such as real-time quaking-induced conversion (RT-QuIC) and fluorophore-assisted protein misfolding cyclic amplification (F-PMCA), have become indispensable tools for studying protein misfolding in neurodegenerative diseases. However, analyzing data generated by these techniques often requires complex and time-consuming manual processes. Additionally, the lack of standardization in F-SAA data analysis presents a significant challenge to the interpretation and reproducibility of F-SAA results across different laboratories and studies.

View Article and Find Full Text PDF

Introduction: Creutzfeldt-Jakob disease (CJD) is a rare, rapidly progressive, fatal, neurodegenerative disease classified as prion diseases. There are many subtypes of this disease, but information about clinical presentation and investigation findings in Thailand is scarce.

Objective: To describe the clinical presentation, radiological and electroencephalographic characteristics of CJD encountered at Siriraj hospital in the past 10 years (between January 1, 2006 and December 31, 2015).

View Article and Find Full Text PDF

Prion diseases, or transmissible spongiform encephalopathies (TSEs), are neurodegenerative disorders caused by the accumulation of misfolded conformers (PrP) of the cellular prion protein (PrP). During the pathogenesis, the PrP seeds disseminate in the central nervous system and convert PrP leading to the formation of insoluble assemblies. As for conventional infectious diseases, variations in the clinical manifestation define a specific prion strain which correspond to different PrP structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!