Mammalian tolloid alters subcellular localization, internalization, and signaling of alpha(1a)-adrenergic receptors.

Mol Pharmacol

Institute of Vascular Medicine, Peking University Third Hospital, No.49 Huayuan North Road, Haidian District, Beijing, P.R. China 100083.

Published: August 2006

In the present study, we identified the CUB5 domain of mammalian Tolloid (mTLD) as a novel protein binding to alpha(1A)-adrenergic receptor (AR) using the yeast two-hybrid system. Whereas CUB5 did not couple to either alpha(1B)-AR or alpha(1D)-AR. It was determined that amino acids 322 to 359 of alpha(1A)-AR were the major binding region for CUB5. The direct interaction between alpha(1A)-AR cytoplasmic tail and CUB5 was discovered by glutathione S-transferase pull-down assay. We confirmed the interaction of mTLD with alpha(1A)-AR in human embryonic kidney (HEK) 293 cells by immunoprecipitation, immunofluorescence, and fluorescence resonance energy transfer. Although mTLD did not affect the density and affinity of receptors in crudely prepared membranes from HEK293 cells stably expressing alpha(1A)-AR, it significantly altered the subcellular localization of the receptors. Moreover, mTLD reduced the level of cell surface alpha(1A)-ARs, delayed the initial rate of agonist-induced receptor internalization, and facilitated agonist-induced calcium transient. We have demonstrated that mTLD interacts with alpha(1A)-AR directly, alters the subcellular localization of receptor, and influences agonist-induced alpha(1A)-AR internalization and calcium signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1124/mol.105.016451DOI Listing

Publication Analysis

Top Keywords

subcellular localization
12
mammalian tolloid
8
alters subcellular
8
alpha1a-ar
6
mtld
5
tolloid alters
4
localization internalization
4
internalization signaling
4
signaling alpha1a-adrenergic
4
alpha1a-adrenergic receptors
4

Similar Publications

ssp. is well known as a Cd hyperaccumulator. Yet, understanding how this plant survives in a high Cd environment without appearing toxicity signs is far from complete.

View Article and Find Full Text PDF

Apical and basal dendrites of pyramidal neurons receive anatomically and functionally distinct inputs, implying compartment-level functional diversity during behavior. To test this, we imaged in vivo calcium signals from soma, apical dendrites, and basal dendrites in mouse hippocampal CA3 pyramidal neurons during head-fixed navigation. To capture compartment-specific population dynamics, we developed computational tools to automatically segment dendrites and extract accurate fluorescence traces from densely labeled neurons.

View Article and Find Full Text PDF

Acetyl-coenzyme A is a central metabolite that participates in many cellular pathways. Evidence suggests that acetyl-CoA metabolism is highly compartmentalized in mammalian cells. Yet methods to measure acetyl-CoA in living cells are lacking.

View Article and Find Full Text PDF

Mouse-derived Synaptosomes Trypsin Cleavage Assay to Characterize Synaptic Protein Sub-localization.

Bio Protoc

January 2025

Department of Structural Interactomics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.

Neurons communicate through neurotransmission at highly specialized junctions called synapses. Each neuron forms numerous synaptic connections, consisting of presynaptic and postsynaptic terminals. Upon the arrival of an action potential, neurotransmitters are released from the presynaptic site and diffuse across the synaptic cleft to bind specialized receptors at the postsynaptic terminal.

View Article and Find Full Text PDF

Uptake, Subcellular Distribution, and Metabolism of Decabromodiphenyl Ethane in Vegetables under Different Exposure Scenarios.

Environ Sci Technol

January 2025

Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC, Zhejiang University, Hangzhou 310058, China.

Decabromodiphenyl ethane (DBDPE), a key alternative to deca-BDE (BDE-209), has been ubiquitous in the receiving ecosystem. However, little is known about its uptake process and fate in plants. Here, the plant absorption, distribution, and metabolism of C-DBDPE under two distinct exposure pathways (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!